

Microsoft

WindowsTM

32-Bit API

Rex Jaeschke

Windows 32-Bit API

ii © 2001, 2002, 2005, 2007, 2009 Rex Jaeschke.

© 1995–1997, 2009 Rex Jaeschke. All rights reserved.

Edition: 3.0

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means whatsoever, except in the case of brief quotations embodied in critical reviews and

articles.

The information in this book is subject to change without notice and should not be construed as a commitment by

the author or the publisher. Although every precaution has been taken in the preparation of this book, the author

and the publisher assume no responsibility for errors or omissions.

Java and JavaScript are trademarks of Sun Microsystems.

Alpha is a trademark of Compaq/Digital Equipment Corporation.

MIPS is a trademark of MIPS.

Pentium is a trademark of Intel.

PowerPC is a trademark of Motorola, et al.

Visual C++, Windows, Windows 95, Windows 98, Windows NT, Windows 2000, Windows XP, and Vista are

trademarks of Microsoft Corporation.

The training materials associated with this book are available for license. Interested parties should contact the

author at the address below.

Please address comments, corrections, and questions to the author:

Rex Jaeschke

2051 Swans Neck Way

Reston, VA 20191-4023

+1 (703) 860-0091

www.RexJaeschke.com

rex@RexJaeschke.com

http://www.rexjaeschke.com/
mailto:rex@RexJaeschke.com

Table of Contents

© 2001, 2002, 2005, 2007, 2009 Rex Jaeschke. iii

Preface .. vii

Reader Assumptions ... vii
Presentation Style ... vii
Exercises and Solutions .. viii

1. Memory Layout.. 1

1.1 Address Space .. 1
1.2 Memory Access Violations ... 4
1.3 Code Placement ... 10
1.4 Static Data and Placement ... 12
1.5 String Literals ... 12
1.6 Stack Size and Placement .. 13
1.7 Heap Size and Placement .. 14
1.8 Type Qualifiers and Placement .. 15
1.9 Code and Data Sections ... 16
1.10 Pointer Compatibility and Conversion ... 23

2. Memory Management ... 25

2.1 Introduction ... 25
2.2 Memory Allocation Functions .. 25

2.2.1 Source Level Using C .. 26
2.2.2 Source Level Using C++ .. 26
2.2.3 High-Level API Functions ... 26
2.2.4 Low-Level API Functions .. 27

2.3 Some Final Comments ... 28

3. Handling API Errors .. 29

3.1 Introduction ... 29
3.2 The ProcError Facility .. 29
3.3 The Message File ... 32
3.4 API Functions and Invalid Arguments .. 33

4. Objects and Handles ... 35

4.1 Introduction ... 35
4.2 Object Types .. 35
4.3 Object Creation and Deletion .. 36
4.4 Object Names .. 36
4.5 Handle Inheritance .. 38

4.5.1 Introduction ... 38
4.5.2 Passing Handles via the Command Line .. 39
4.5.3 Passing Handles via Environment Variables .. 45
4.5.4 Sharing Handles between Sibling Processes ... 47

4.6 Handle Duplication .. 50

5. Processes and Threads ... 55

5.1 Introduction ... 55
5.2 Atomic and Non-Atomic Objects ... 57
5.3 Reentrancy ... 58
5.4 Process and Thread IDs .. 59
5.5 Process and Thread Priority ... 59
5.6 Process and Thread Creation ... 64
5.7 Process and Thread Termination ... 68

Windows 32-Bit API

iv © 2001, 2002, 2005, 2007, 2009 Rex Jaeschke.

5.8 Thread Suspension ... 69
5.9 Thread Synchronization ... 69
5.10 Compiler/Linker Considerations .. 69
5.11 Calling Standard C Functions From a Thread ... 70

6. Thread Local Storage .. 73

6.1 TLS using the API .. 73
6.2 TLS using Visual C++ ... 78

7. Synchronization ... 83

7.1 Introduction ... 83
7.2 Synchronization Methods .. 84
7.3 The Wait Functions .. 84
7.4 Atomicity Revisited .. 87
7.5 The Interlocking Functions .. 91
7.6 Riscy C/C++ Code ... 93

7.6.1 Multithreading Meets SMP and RISC .. 94
7.6.2 C++ Classes Meet SMP and RISC .. 97

8. Critical Sections .. 99

8.1 Asynchronous Access to a Queue .. 99
8.2 The API Support Machinery ... 100
8.3 A Demonstration Program ... 101
8.4 Miscellaneous Issues ... 103

9. Mutexes .. 107

9.1 Introduction ... 107
9.2 An Example .. 107
9.3 Miscellaneous Issues ... 113

10. Events .. 115

10.1 Introduction ... 115
10.2 The Demonstration Programs ... 115
10.3 Creating New Event Objects .. 116
10.4 Opening Existing Event Objects ... 117
10.5 Setting an Event Object ... 118
10.6 Clearing an Event Object ... 118
10.7 Waiting for Event Objects .. 119

11. Semaphores ... 121

11.1 Introduction ... 121
11.2 An Example .. 121
11.3 Miscellaneous Issues ... 125

12. MFC's Synchronization Classes .. 127

12.1 Direct API Function Access .. 127
12.2 The CCriticalSection Class .. 131
12.3 The BOOL Return Values .. 133
12.4 Weathering Exceptions .. 135
12.5 Further Encapsulation .. 138
12.6 The CMutex Class .. 143
12.7 Handling API Return Values ... 147
12.8 Getting at the Underlying Handles .. 152

Table of Contents

© 2001, 2002, 2005, 2007, 2009 Rex Jaeschke. v

12.9 The CEvent Class .. 152
12.10 The CSemaphore Class ... 153

13. File Mapping .. 155

13.1 Communicating Via Shared Memory ... 155
13.1.1 Introduction ... 155
13.1.2 File Maps.. 156
13.1.3 File Views ... 157
13.1.4 Restricted and Extended Maps and Views .. 158
13.1.5 Access Modes .. 159
13.1.6 The Demonstration Programs ... 160
13.1.7 Miscellaneous Notes ... 161

13.2 Mapping a Named File into Memory ... 162
13.2.1 Creating a File .. 163
13.2.2 Processing a File .. 165
13.2.3 Miscellaneous Issues ... 177

14. Mailslots .. 179

14.1 Introduction ... 179
14.2 Mailslot Server ... 179
14.3 Mailslot Client .. 182
14.4 Some Examples .. 183
14.5 Miscellaneous Issues ... 184

15. Pipes 187

15.1 Anonymous Pipes .. 187
15.2 Named Pipes .. 192
15.3 Asynchronous I/O .. 209
15.4 Blocking .. 209
15.5 Win95 Issues .. 209

16. Internationalization and the 32-Bit API ... 211

16.1 Why Bother with Internationalization? ... 211
16.2 The Need for Abstract Types ... 212
16.3 Standard C Function Mapping ... 215
16.4 API Function Mapping.. 218
16.5 String Literals Revisited .. 219
16.6 A Summary of the Steps .. 222

17. Signal Handling .. 223

17.1 Introduction ... 223
17.2 An Example .. 225
17.3 Portability and Extensions ... 228
17.4 SIG_DFL Handling ... 229
17.5 SIG_IGN Handling ... 229
17.6 Handler Requirements and Limitations ... 229
17.7 Control Event Handling .. 229
17.8 Regarding Documentation ... 229

18. Control Event Handling ... 231

18.1 Control Handler Registration ... 231
18.2 Registering Multiple Handlers ... 233

Windows 32-Bit API

vi © 2001, 2002, 2005, 2007, 2009 Rex Jaeschke.

18.3 Changing Handlers at Runtime .. 235
18.4 Tracing Control Events ... 236
18.5 Detached Processes ... 237
18.6 Mixing Standard C/C++ and 32-Bit API Machinery .. 237

19. Error Handling via errno ... 239

19.1 Multi-Threaded Considerations ... 239
19.2 errno Value Macros ... 240
19.3 Miscellaneous Issues ... 240

20. Date and Time Processing ... 241

20.1 API Functions ... 241
20.2 C/C++ Library Functions ... 245
20.3 Conclusion.. 250

21. Message Files ... 251

21.1 Introduction ... 251
21.2 Message File Format .. 251
21.3 Incorporating a Message File in an EXE ... 256
21.4 Sharing a Message File ... 260
21.5 More on Inserts ... 261
21.6 Miscellaneous Issues ... 264

22. Event Logging ... 265

22.1 Introduction ... 265
22.2 The Registry ... 269
22.3 Message Files ... 271
22.4 Adding a New Registry Key .. 273
22.5 Running the Demo Program .. 273
22.6 The Demo Program .. 275
22.7 Miscellaneous Issues ... 278

23. Change Notification .. 281

24. Locking File Regions ... 285

25. Atoms .. 293

25.1 Introduction ... 293
25.2 Using Atom Tables ... 293
25.3 Integer Atoms .. 304
25.4 Maximum Atom Table Size .. 306
25.5 Miscellaneous Issues ... 306
25.6 The Bottom Line... 307

Annex A. Function Name Mappings... 309

A.1 Mapping SBCS Names to Generic Names .. 309
A.2 Mapping Generic Names to SBCS Names .. 316

Index ... 323

Preface

© 2001, 2002, 2005, 2007, 2009 Rex Jaeschke. vii

Preface

This book presents information about various components of Microsoft's 32-bit API. All of these components are

at work “behind the scenes.'' None of them involves the GUI interface; there are already plenty of sources of

information for Windows programming in general. What this book is concerned with is what to do in between the

time you get input into your program and when you output the results. This book covers the bread and butter of

getting the real work done.

The initial research and testing for this book was done using Windows NT (hereafter referred to as WinNT).

However, much of it also applies directly to Windows 95 (hereafter referred to as Win95) and all examples have

been tested under that environment as well. Except where noted, the behavior described is identical for both

systems. (For the purposes of this book, Windows XP and Vista are modern versions of WinNT.)

While a number of vendors sell C/C++ compilers, linkers, and other related development tools for the Windows

32-bit API environment, Microsoft's Visual C++ is perceived, at least by this author, to be the implementation of

choice. Therefore, examples and narrative have been written assuming use of that compiler and its associated

linker. The reader will need to extrapolate for other development systems.

Reader Assumptions

Most examples are written in C, so a good working knowledge of that language is assumed. Except where stated

otherwise, references to Standard C also imply Standard C++.

Because it is not at all difficult to do so, most examples have been internationalized. Specifically, they can be

compiled to support the following character modes: single-byte, double-byte, and wide character. However, all

text inside string literals and character constants is written in English. Making the code completely independent of

cultural environment would require placing such strings in string resources. Since the primary audience for this

book is currently English-speaking I decided to not add this extra level of abstraction. If you are not familiar with

Microsoft's approach to producing internationalized code and you want to know more about it, refer to §1. If you

don't care to know and just want to be able to follow the examples, follow these simple guidelines: First, ignore

each occurrence of the function-like macro _T. For example, read _T("Hello") as if it said "Hello", and read

_T('Y') as if it said 'Y'. Second, names such as _stprintf and _tcscpy are simply masking macros that are

replaced by the underlying library function names sprintf and strcpy, respectively, in single-byte mode.

Annex A shows how to translate these names.

The reader is assumed to be comfortable with the type qualifiers const and volatile, function prototypes, and

type synonyms.

Presentation Style

The approach used in this book is different from that used in many other books and training courses. Having

developed and delivered programming-language training courses for more than 15 years, I have found that the

best approach for my students is an incremental one. I avoid introducing things that are unnecessary at any given

Windows 32-Bit API

viii © 2001, 2002, 2005, 2007, 2009 Rex Jaeschke.

time, thus making examples small, simple, and well focused. Specifically, I introduce the basic elements and

constructs of the language using procedural programming examples.

I prefer the student to have an excellent chance of understanding and absorbing small amounts of new material,

and reinforcing it with lab sessions, as they progress. The intent here is to eliminate any chance of their being

overwhelmed, provided, of course, they meet the prerequisites.

Different styles work for different teachers and different students. I do not suggest that my approach is better

than is any other; I simply know that my approach works well, and has formed the basis of my successful seminar

business for more than a decade.

Exercises and Solutions

The programs shown in the text are available electronically in a directory tree named Source, where each

chapter has its own subdirectory.

Some chapters contains exercises, some of which have the character * following their number. For each exercise

so marked, a solution is provided in a directory tree named Labs, in which each chapter has its own

subdirectory.1 Exercises that are not so marked have no general solution and require experimentation or research

in an implementation's documentation. Exercises having solutions contain a statement of the form “(See lab

directory xx.)”, which indicates the corresponding solution or test file in the Labs subdirectory.

You are strongly encouraged to solve all exercises in one section before continuing to the next. Also, invent your

own exercises as you go and be inquisitive; don't be afraid to experiment. Try to understand why the compiler

gives you each error or why a program fails at run time.

Rex Jaeschke, November 2009

1
 The solutions are only available to licensees of these materials when they are used in formal training scenarios.

1. Memory Layout

© 2001, 2002, 2005, 2007, 2009 Rex Jaeschke. 1

1. Memory Layout

In this chapter, we'll learn how memory is laid out and how a compiler and linker organize things in memory, just

what locations we can access, which are off limits, and why.

1.1 Address Space

Win95 and WinNT use 32-bit addressing,1 resulting in a linear address space range of 0x0–0xFFFFFFFF; that's

4 gigabytes! Virtual addresses are mapped to physical addresses by the operating system allowing a process to be

relocated in memory at runtime.2

Memory is organized in units called pages, the size of which can vary from one platform to another. For example,

on Intel machines each page is 4KB while on Alpha-based systems each page is 8KB. Therefore, we should not

hard-code the page size in our programs; instead, we should obtain it by calling the API function

GetSystemInfo.

In WinNT, the address space is broken up into two equal-size parts: system space and user space, as follows:

System Space

User Space

0x7FFFFFFF

0x00000000

0x80000000

0xFFFFFFFF

User-mode code cannot read from or write to memory located in system space. Therefore, any attempt to access

memory addresses in the range 0x80000000–0xFFFFFFFF results in an access violation; that is, an attempt to

access memory we do not own, or for which we have no access permission. (§1.2 covers access violations in

detail.) As a result, if we dereference an uninitialized automatic pointer, we have a 50 percent chance of getting

an access violation. And that's good, since most access violations show up very quickly.

As it happens, user-mode code cannot actually access all 2GB of the user space. Specifically, a block of low and a

block of high addresses in that space are inaccessible, as shown below.

1
 This is true even when WinNT is running on 64-bit machines.

2
 For detailed information on how this mapping works, see Helen Custer's book Inside Windows NT from Microsoft Press,

1993 (and its subsequent revisions).

Windows 32-Bit API

2 © 2001, 2002, 2005, 2007, 2009 Rex Jaeschke.

No Access

Accessible

0x7FFFFFFF

0x00000000

0x7FFF0000

No Access
0x0000FFFF

0x00010000

0x7FFEFFFF

User-mode code cannot read or write to memory located in these two 64KB areas. Therefore, any attempt to

access memory addresses in the ranges 0x0–0x0000FFFF and 0x7FFF0000–0x7FFFFFFF results in an access

violation. Furthermore, user-mode code can only access user space allocated to its parent program. And since

most programs are considerably smaller than 2GB - (2 * 64KB), most user space is inaccessible to user-mode code.

In Win95, the address space is broken up into five parts, as follows:

No Access

Accessible

0x7FFFFFFF

0x00000000

0x7FFF0000

No Access
0x0000FFFF

0x00010000

0x7FFEFFFF

The parts marked “Don't Touch”' are accessible, but we should not access addresses located there. The part

marked “Accessible'' is private to each process while that marked “Accessible (shared)” is shared by all 32-bit

processes.

The API function GetSystemInfo provides useful information about an address space. The following information

was produced from program sysinfo.c (which calls this function):

Property Win95/Intel WinNT/Intel WinNT/Alpha

Address Space 00000000–

FFFFFFFF

00000000–

FFFFFFFF

00000000–

FFFFFFFF

Page Size 4096 bytes 4096 bytes 8192 bytes

Number of

Pages

1048576 1048576 524288

Allocation

Granularity

65536 bytes 65536 bytes 65536 bytes

Min Application

Address

00400000 00010000 00010000

1. Memory Layout

© 2001, 2002, 2005, 2007, 2009 Rex Jaeschke. 3

Property Win95/Intel WinNT/Intel WinNT/Alpha

Max Application

Address

7FFFFFFF 7FFEFFFF 7FFEFFFF

OEM ID 0 0 2

Active Processor

Mask

00000001 00000001 00000001

Number of

Processors

1 1 1

Processor Type Intel 486 Intel Pentium Alpha 21064

While most of this information comes directly from the SYSTEM_INFO structure, some of it is computed. The

Minimum and Maximum Application Addresses correspond to those mentioned earlier.1

Each virtual page of memory has a set of attributes assigned to it, depending on how that page is to be used. The

attributes are, as follows: Read-only, Read/write, Execute only, Guard page, No-access, and Copy-on-write. Note

that while we can jump to an address in an execute-only page and execute instructions contained therein, we

cannot actually read that page.2

Program testrd.c probes all 2GB of its user space. It reports on contiguous blocks of memory that are readable

and non-readable. Its output looks like the following:

 Address Range Length Attribute

===

00000000-0000FFFF (00010000) Not Readable

00010000-00010FFF (00001000) Readable

...

7FFDE000-7FFE0FFF (00003000) Readable

7FFE1000-7FFFFFFF (0001F000) Not Readable

===

Total memory readable: 00176000

Total memory not readable: 7FE8A000

Total memory: 80000000

1
 Some of the same information can be obtained from the WinNT Diagnostics program, option Hardware, in the

Administrative Tools group.
2
 On systems that don't support execute-only pages (such as those based on processors from MIPS and Intel), these pages are

treated as read-only.

7. Synchronization

© 2001, 2002, 2005, 2007, 2009 Rex Jaeschke. 83

7. Synchronization

In this chapter, we will see an overview of the various ways in which we can synchronize the execution of threads.

We will also look at the API functions used to achieve synchronization.

7.1 Introduction

Historically, almost all applications ran in serial mode, one part after the other. As a result, all operations were

inherently synchronized and the interaction of the parts was simple and well defined. Because only one operation

was in progress at any time, there was no contention for shared resources; indeed, there were no shared

resources.

Newer operating systems give applications programmers the ability to share resources—such as memory and

devices—between separately executing programs. In recent years, such parallelism has been extended to a single

program by the addition of a multithreading capability. As we learned in §1, a thread is a separate stream of

execution. In our serial program model, the program has one thread; we say it is single-threaded.

There are a number of ways to make a program multithreaded. The obvious approach is to use some language or

library facility to start up threads explicitly. The less obvious approach is via signal handlers. When a signal (caused

by a divide-by-zero, for example) occurs, the current thread of execution is blocked and control transfers to a new

thread, which handles the signal. Upon completion, the signal handler thread terminates and control returns to

the interrupted thread.

Whatever the method used to produce concurrently executing threads, if multiple threads need access to the

same resource, some form of synchronization is needed.

Clearly, it is important not to keep a resource locked any longer than necessary. Consider the case in which a

related set of measurements is taken and the results are used in a lengthy series of calculations. Rather than

locking up the table of values during these calculations, the locking thread can copy the table to a private array,

release the lock, and then process the private copy. Now, if a new set of measurements arrives, it can be stored

immediately the lock is released. That is, we take a synchronized snapshot and work on the copy. However,

depending on our application, this approach may be good or bad. Consider the case in which new and better data

arrives yet we are off processing the previous set. In this case it might be better to abandon that processing and

start on the new set. However, if new measurements arrive at a rapid pace, we might spend considerable time

starting and aborting processing without getting any computations completed.

Synchronization between threads is needed when either of the following situations occur: a resource can have

only one user at a time (for example, a communications port), or where multiple users have access to a shared

resource and one or more of them wants write access to non-atomic shared objects (for example, one file writer

with multiple readers of that file).

Windows 32-Bit API

84 © 2001, 2002, 2005, 2007, 2009 Rex Jaeschke.

7.2 Synchronization Methods

The 32-bit API supports a number of different ways of synchronizing multiple threads within a process and/or

between processes running on the same machine. These methods involve the use of the following kinds of

objects:

 Critical Section —This object is used to guard a piece of code that can be executed only by one thread at a

time. Consider the case of multiple threads each wanting to update a non-atomic data structure in shared

memory; only one thread at a time should have write access. (Note, however, a critical section does not

prevent some other piece of code from accessing that shared structure for read, and that could result in a

problem.) A critical section is owned by one thread at a time. Threads synchronizing via a critical section

must be in the same process. For more information on critical sections, see §1.

 Event —Any thread with access to an event object can set that object so that all threads waiting on that

object to be set, can resume. One use for an event is in the case in which a processing thread only

processes the data in some buffer when new data has been stored. At all other times, it is waiting for that

event to complete. An event is not owned by any thread, per se. Threads synchronizing via an event can

be in the same process or in different processes on the same system. For more information on events,

see §1.

 Mutex —This kind of object can be owned by only one thread at a time. It provides a way for threads to

have mutually exclusive access to some shared resource. One use for a mutex is to control access to

memory shared between multiple processes via a file map. Threads synchronizing via a mutex can be in

the same process or in different processes on the same system. For more information on mutexes, see §1.

 Semaphore —A semaphore object is a more general form of a mutex in that it allows no more than a

given number of threads to be accessing some shared resource simultaneously. We use a semaphore to

control a shared resource that can only (or efficiently) support a limited number of users. A semaphore is

not owned by any thread per se; a given thread either is or is not currently one of the set of threads

having access to the resource being controlled by the semaphore. Threads synchronizing via a semaphore

can be in the same process or in different processes on the same system. For more information on

semaphores, see §1.

7.3 The Wait Functions

Except for critical sections, each synchronization object has a handle. A thread that wishes to make use of a

resource protected by some synchronization object specifies that handle when it calls the appropriate wait

function. If a thread needs access to any one or to all of a set of resources each protected by different

synchronization objects, it must specify the handle of each object.

Once a synchronization object has been created, it has one of two possible states: signaled or non-signaled. When

a synchronization object becomes signaled, any thread waiting on it can continue execution. The non-signaled

state indicates that the synchronization object is not currently available, causing the requesting thread to be

blocked—that is, put into an efficient wait state.

When a wait function is called, the thread does not continue execution until that function returns. And it does not

return unless the conditions specified in its call have been met. Typically, the caller asks to continue when the

objects designated by one or more handles become signaled. However, the caller can also ask for the wait to

7. Synchronization

© 2001, 2002, 2005, 2007, 2009 Rex Jaeschke. 85

“time out” after a given time period has elapsed. An INFINITE time period results in the thread waiting forever,

if necessary.

The simplest and most commonly used wait function is WaitForSingleObject, which requires that only one

handle be passed:

DWORD WaitForSingleObject(HANDLE hHandle, DWORD dwMilliseconds);

dwMilliseconds represents the time-out interval. If the wait request succeeds, a number of possible values can

be returned. They are:

 WAIT_OBJECT_0 – The object designated by the handle is signaled.

 WAIT_TIMEOUT – Indicates that the time-out interval elapsed before the object designated by the handle

became signaled.

 WAIT_ABANDONED – Indicates that the object designated by the handle was abandoned. A mutex is

owned by one thread at a time. If the thread owning a mutex terminates before releasing that thread, the

mutex is marked as being abandoned. Then, the next thread waiting to own that mutex, gets ownership

and this macro value is returned.

If the wait request fails, WAIT_FAILED is returned. Here's an example of using WaitForSingleObject:

HANDLE handle;

DWORD value;

if ((value = WaitForSingleObject(handle, INFINITE)) == WAIT_FAILED)

{

 ProcError(_T("WaitForSingleObject failed"), API_Error);

}

Although we are concerned primarily here about waiting for events, mutexes, and semapahores, we can also wait

for various other kinds of objects to become signaled. These include detection of the following: certain changes

to a directory, arrival of console input, and termination of a thread or process.

To wait for any one or all of a number of objects to become signaled, we use WaitForMultipleObjects:

DWORD WaitForMultipleObjects(DWORD nCount, CONST HANDLE *lpHandles,

 BOOL bWaitAll, DWORD dwMilliseconds);

The first argument, nCount, specifies the number of handles in the array specified by the second argument,

lpHandles. The array can contain no more than MAXIMUM_WAIT_OBJECTS handles. It is most important to note

that the handles in the array need not all refer to objects of the same type. For example, we could wait on all (or

any one) of a set containing handles to an event, a mutex, and a semaphore. If we wish to wait for all the

specified objects, we make bWaitAll be TRUE. If we wish to wait for any one the specified objects, we make it

be FALSE.

13. File Mapping

© 2001, 2002, 2005, 2007, 2009 Rex Jaeschke. 155

13. File Mapping

A file map can be used for two distinct purposes: to provide an inter-process communication facility backed up by

the system-paging file and, to map a named file into the address space of a process, allowing very efficient I/O. (Of

course, an application can use a combination of these approaches.)

13.1 Communicating Via Shared Memory

In this section, we will see how an almost arbitrarily large block of memory can be shared between separate

programs, allowing them to have access to the same data. And with the proper synchronization, these programs

can read from and/or write to that shared data, simultaneously.

13.1.1 Introduction

We can share memory between threads in different processes running on the same system by using what is called

a file map. This technique is very efficient when a large amount of data is to be communicated from one program

to another because the data is instantly available to all programs that can map to this memory; no data need

actually be sent between the programs.

The memory being shared is always backed up by a disk file. As the shared memory is modified, so too is this file,

because of the operating system's memory paging operations. This is most useful in certain applications. Consider

the case where one program acquires data and stores it in shared memory where it can be accessed by other

programs in that application. At any time, the disk version reflects the state of the shared memory. Therefore, if

the application or system crashes for any reason, the state of the in-memory database can automatically be

restored when the application is restarted.

In virtual operating systems such as Win95 and WinNT, each program is allocated a series of virtual address by the

linker. When the program is run, pages of memory are allocated to it. Ordinarily, the pages allocated to one

program are not accessible to another. However, for shared memory, the same pages are allocated to multiple

programs. Therefore, a given physical page of memory might start at one virtual address in one program but have

an entirely different starting address in another.

The disk file used to backup the shared memory can either be named or unnamed. If a named file is desired, the

user must create it in the desired directory with the appropriate access attributes. The file might be initialized

before any application maps memory to it (as in program fmapfcr.c) or it might be initialized by the application, as

the programmer desires. Being a named file, it lives at the pleasure of its owner. A named file allows information

to be saved and restored across different executions of the mapping application. If we do not need a permanent

record of the mapped memory, we can request that the operating system swapping file be used instead. (If we do

this, the swap file must be large enough to contain all unnamed file-mapped memory for all applications running

at the same time.)

When a named file is used, its contents are loaded into shared memory when its parent application begins

execution. From that point on, the application's programs see the file's contents as an array of bytes in memory,

making that file much simpler to deal with.

Windows 32-Bit API

156 © 2001, 2002, 2005, 2007, 2009 Rex Jaeschke.

A program can use a file view to map into as many as 232 bytes of a file. However, when using 32-bit addressing,

that takes up the whole of the program's address space so we really can't view that much. If we actually have files

larger than that, we can use multiple file views, each mapping up to 232 bytes. In this manner, we can map into a

file containing 264 bytes, using 232 file views each mapping 232 bytes.1

For files of any size, it is possible to specify a file's starting offset and view size, allowing views to be smaller than

232 bytes. This is useful when files are very large and, either little memory is available to map into that file or, the

programmer does not wish to make much memory available, thereby keeping the size of the program down.

Unless we specify otherwise, the whole file will be mapped provided it will fit. Note, however, that we cannot

simply view a file of any size starting at any offset; the starting offset must be a multiple of the system's memory

allocation granularity.2

When a named file is used, it should be opened for exclusive use. (If it is already open for use by another program,

the message ERROR_SHARING_VIOLATION results.) For example, program fmap2a.c contains the following:

hFile = CreateFile(_T("filemap.dat"), GENERIC_READ | GENERIC_WRITE,

 0, NULL, OPEN_EXISTING, 0, NULL);

The file filemap.dat is an existing file (created by fmapfcr.c) that should be opened for both read and write

operations. The third argument is a 0, indicating that the file cannot be shared while it is open. Because this file

will be updated by the operating system's paging machinery, we can never synchronize read or write access with

other applications wishing to access this file at the same time. If we were opening this file for read-only mode,

then it may make sense to open it for shared read. However, it never makes sense to open it for shared write. In

this example, if the file does not exist, the call returns ERROR_FILE_NOT_FOUND.

13.1.2 File Maps

Before memory can be shared, we must create a map object to define and control the sharing. This is done by

calling CreateFileMapping. For example:

hMap = CreateFileMapping(hFile, NULL, PAGE_READWRITE, 0, 0, _T("FileMap"));

For named map files, the first argument specifies the file handle returned from CreateFile. For unnamed map

files, the first argument must be (HANDLE) 0xFFFFFFFF. Both read and write access have been requested and the

map object has been called FileMap. Arguments 4 and 5 are given the default value of zero, indicating that the

whole file should be mapped. These arguments must specify a size if the system-paging file is being used

otherwise ERROR_INVALID_PARAMETER results.

When a file map is created using CreateFileMapping, it is given a name,3 access permission, and a maximum

size. Other programs that wish to access this map should do so by using OpenFileMapping. (It is possible to

have them use CreateFileMapping instead, however.) OpenFileMapping cannot override the map object

attributes established by CreateFileMapping when the map was created.

1
 Note, however, that in §1, we learned that a non-privileged program can really only access slightly less than 2

32
 bytes of

address space.
2
 On Intel- and Alpha-based systems, this value is 64KB. Run program sysinfo.c to find out this value for your system.

3
 Refer to §4.4 for more information on object names.

13. File Mapping

© 2001, 2002, 2005, 2007, 2009 Rex Jaeschke. 157

If OpenFileMapping fails to find a file map with the name specified, the non-obvious message

ERROR_FILE_NOT_FOUND results. In reality, this operation has nothing to do with a file; the message really

means there is no such file map object.

Once a file map object is created, it exists until all programs that are using it, terminate. Consider the scenario in

which program P1 opens the file and creates the file map object. Then programs p2 through Pn access that same

file map object. If Programs P2 through Pn terminate before P1, exclusive access to the disk file is relinquished

only when all programs are done. However, what happens if P1 terminates while one or more of P2 through Pn

are still executing? Yes, the file system sees the exclusive access terminate so it allows the file to be read by other

programs. However, it will not allow the file to be deleted or written to; attempts to do so result in

ERROR_USER_MAPPED_FILE.

There is no explicit action needed to destroy a file map. Ordinarily, a file map goes away when the file to which it

is mapped, is closed. However, if a file close is requested by the program that created the file map, and other

programs are still using that map, the file isn't closed, and so the map isn't destroyed until the last application

program using it, terminates.

13.1.3 File Views

The creation and subsequent opening of a file map only declares our intent to access the shared memory. To

actually access the memory, we must create a file view. For example:

int *p;

p = MapViewOfFile(hMap, FILE_MAP_READ, 0, 0, 0);

The first argument specifies the file map handle returned by CreateFileMapping or OpenFileMapping. The

second argument indicates the access required; FILE_MAP_READ indicates read-only access while

FILE_MAP_WRITE provides both read and write capability. The third and fourth arguments specify the file's base

offset at which to begin, while the last argument specifies the view size. A view then is a window into the mapped

file. And we can have multiple views of the same file, all using the same map object. However, if we are writing to

the shared memory, we must be sure not to have views that overlap.

MapViewOfFile returns a void pointer. In C, this pointer can safely be assigned directly into a pointer of any

type. However, such assignments are prohibited in C++, in which case, an explicit cast is needed just as it would be

in a call to malloc. In fact, we can think of MapViewOfFile as being just like malloc in C/C++ or new in C++—

both return the address of a newly allocated block of memory. Therefore, the way in which we access this

memory is determined by the type of the pointer that leads to it. In the example above, p is a pointer to int so,

by subscripting p, we can treat the shared memory as an array of ints, as in

p[elem_num] = value;

A view is destroyed by calling UnmapViewOfFile. For example:

UnmapViewOfFile(p);

If p does not current point to an existing view, ERROR_INVALID_ADDRESS results.

	Preface
	Reader Assumptions
	Presentation Style
	Exercises and Solutions

	Memory Layout
	Address Space
	Memory Access Violations
	Code Placement
	Static Data and Placement
	String Literals
	Stack Size and Placement
	Heap Size and Placement
	Type Qualifiers and Placement
	Code and Data Sections
	Pointer Compatibility and Conversion

	Memory Management
	Introduction
	Memory Allocation Functions
	Source Level Using C
	Source Level Using C++
	High-Level API Functions
	Low-Level API Functions

	Some Final Comments

	Handling API Errors
	Introduction
	The ProcError Facility
	The Message File
	API Functions and Invalid Arguments

	Objects and Handles
	Introduction
	Object Types
	Object Creation and Deletion
	Object Names
	Handle Inheritance
	Introduction
	Passing Handles via the Command Line
	Passing Handles via Environment Variables
	Sharing Handles between Sibling Processes

	Handle Duplication

	Processes and Threads
	Introduction
	Atomic and Non-Atomic Objects
	Reentrancy
	Process and Thread IDs
	Process and Thread Priority
	Process and Thread Creation
	Process and Thread Termination
	Thread Suspension
	Thread Synchronization
	Compiler/Linker Considerations
	Calling Standard C Functions From a Thread

	Thread Local Storage
	TLS using the API
	TLS using Visual C++

	Synchronization
	Introduction
	Synchronization Methods
	The Wait Functions
	Atomicity Revisited
	The Interlocking Functions
	Riscy C/C++ Code
	Multithreading Meets SMP and RISC
	C++ Classes Meet SMP and RISC
	The Bottom Line

	Critical Sections
	Asynchronous Access to a Queue
	The API Support Machinery
	A Demonstration Program
	Miscellaneous Issues

	Mutexes
	Introduction
	An Example
	Miscellaneous Issues

	Events
	Introduction
	The Demonstration Programs
	Creating New Event Objects
	Opening Existing Event Objects
	Setting an Event Object
	Clearing an Event Object
	Waiting for Event Objects

	Semaphores
	Introduction
	An Example
	Miscellaneous Issues

	MFC's Synchronization Classes
	Direct API Function Access
	The CCriticalSection Class
	The BOOL Return Values
	Weathering Exceptions
	Further Encapsulation
	The CMutex Class
	Handling API Return Values
	Getting at the Underlying Handles
	The CEvent Class
	The CSemaphore Class

	File Mapping
	Communicating Via Shared Memory
	Introduction
	File Maps
	File Views
	Restricted and Extended Maps and Views
	Access Modes
	The Demonstration Programs
	Miscellaneous Notes

	Mapping a Named File into Memory
	Creating a File
	Processing a File
	Miscellaneous Issues

	Mailslots
	Introduction
	Mailslot Server
	Mailslot Client
	Some Examples
	Miscellaneous Issues

	Pipes
	Anonymous Pipes
	Named Pipes
	Asynchronous I/O
	Blocking
	Win95 Issues

	Internationalization and the 32-Bit API
	Why Bother with Internationalization?
	The Need for Abstract Types
	Standard C Function Mapping
	API Function Mapping
	String Literals Revisited
	A Summary of the Steps

	Signal Handling
	Introduction
	An Example
	Portability and Extensions
	SIG_DFL Handling
	SIG_IGN Handling
	Handler Requirements and Limitations
	Control Event Handling
	Regarding Documentation

	Control Event Handling
	Control Handler Registration
	Registering Multiple Handlers
	Changing Handlers at Runtime
	Tracing Control Events
	Detached Processes
	Mixing Standard C/C++ and 32-Bit API Machinery

	Error Handling via errno
	Multi-Threaded Considerations
	errno Value Macros
	Miscellaneous Issues

	Date and Time Processing
	API Functions
	C/C++ Library Functions
	Conclusion

	Message Files
	Introduction
	Message File Format
	Incorporating a Message File in an EXE
	Sharing a Message File
	More on Inserts
	Miscellaneous Issues

	Event Logging
	Introduction
	The Registry
	Message Files
	Adding a New Registry Key
	Running the Demo Program
	The Demo Program
	Miscellaneous Issues

	Change Notification
	Locking File Regions
	Atoms
	Introduction
	Using Atom Tables
	Integer Atoms
	Maximum Atom Table Size
	Miscellaneous Issues
	The Bottom Line

	Function Name Mappings
	Mapping SBCS Names to Generic Names
	Mapping Generic Names to SBCS Names

	Index

