

Advanced Programming

in Visual Basic .NETTM

Rex Jaeschke

Advanced Programming in Visual Basic .NET

ii © 2002, 2009 Rex Jaeschke.

© 2002, 2009 Rex Jaeschke. All rights reserved.

Edition: 2.0

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means whatsoever, except in the case of brief quotations embodied in critical reviews and

articles.

The information in this book is subject to change without notice and should not be construed as a commitment by

the author or the publisher. Although every precaution has been taken in the preparation of this book, the author

and the publisher assume no responsibility for errors or omissions.

Java and JavaScript are trademarks of Sun Microsystems.

.NET, Visual Basic, Visual C#, Visual C++, Visual Studio, and JScript are trademarks of Microsoft.

The training materials associated with this book are available for license. Interested parties should contact the

author at the address below.

Please address comments, corrections, and questions to the author:

Rex Jaeschke

2051 Swans Neck Way

Reston, VA 20191-4023

+1 (703) 860-0091

+1 (703) 860-3008 (fax)

www.RexJaeschke.com

rex@RexJaeschke.com

http://www.rexjaeschke.com/
mailto:rex@RexJaeschke.com

Table of Contents

© 2002, 2009 Rex Jaeschke. iii

Preface .. v

Reader Assumptions ... v
Presentation Style ... v
Exercises and Solutions .. vi
The Status of Visual Basic .NET .. vi

1. Threads .. 1

1.1 Introduction ... 1
1.2 Creating Threads .. 2
1.3 Synchronized Statements .. 5
1.4 Other Forms of Synchronization .. 10
1.5 Managing Threads ... 14
1.6 Thread-Local Storage ... 15
1.7 Atomicity and Interlocked Operations .. 17

2. Object Serialization .. 21

2.1 Introduction ... 21
2.2 Serializing Objects that Contain References .. 24
2.3 Handling Multiple References ... 26
2.4 Customized Serialization .. 29
2.5 Identifying the Fields to be Serialized .. 33
2.6 Serialization Format ... 36
2.7 Type Packaging .. 38

3. Sockets .. 41

3.1 Introduction ... 41
3.2 Server-Side Sockets .. 41
3.3 Client-Side Sockets ... 45
3.4 Serialization over Sockets .. 48

4. Cloning Objects .. 53

4.1 Copying by Constructor ... 53
4.2 Class Cloning .. 54
4.3 The Procedure Clone .. 55
4.4 Using Object.MemberwiseClone ... 56
4.5 Cloning Arrays .. 59
4.6 Cloning and Derived Classes .. 60
4.7 Creation without Construction .. 62

5. Attributes .. 65

5.1 Introduction ... 65
5.2 Predefined .NET Attributes .. 66
5.3 StructLayout and FieldOffset ... 70
5.4 DllImport ... 72
5.5 CLSCompliant ... 75
5.6 Obsolete .. 76
5.7 Custom Attributes .. 77

Annex A. Operator Precedence ... 79

Annex B. Visual Basic .NET Keywords .. 83

Index ... 85

Advanced Programming in Visual Basic .NET

iv © 2002, 2009 Rex Jaeschke.

Preface

© 2002, 2009 Rex Jaeschke. v

Preface

This text covers a number of more advanced Visual Basic .NET topics. The material is not hardware or operating

system-specific.

Reader Assumptions

To fully understand and exploit the material, you should be conversant with the following concepts and the syntax

required to express them in Visual Basic .NET:

 Basic Language Elements

 Looping and Testing

 Procedures

 References

 Strings and Arrays

 Classes

 Inheritance

 Interfaces

 Exception Handling

 Input and Output

 Namespaces

Presentation Style

The approach used in this book is different from that used in many other books and training courses. Having

developed and delivered programming-language training courses for more than 15 years, I have found that the

best approach for my students is an incremental one. I avoid introducing things that are unnecessary at any given

time, thus making examples small, simple, and well focused. Specifically, I introduce the basic elements and

constructs of the language using procedural programming examples. Once those fundamentals have been

mastered, I move on to object-oriented concepts and syntax. Then follow the more advanced language and library

topics. Many books on object-oriented languages use objects, inheritance, exception handling, GUI, and

numerous non-trivial library facilities in the first few examples, and certainly in the first chapter. I do not care for

this approach, either as a reader or as an educator. Instead, I prefer the student to have an excellent chance of

understanding and absorbing small amounts of new material, and reinforcing it with lab sessions, as they

progress. The intent here is to eliminate any chance of their being overwhelmed, provided, of course, they meet

the prerequisites.

Different styles work for different teachers and different students. I do not suggest that my approach is better

than is any other; I simply know that my approach works well, and has formed the basis of my successful seminar

business for more than a decade.

Advanced Programming in Visual Basic .NET

vi © 2002, 2009 Rex Jaeschke.

Exercises and Solutions

The programs shown in the text are available electronically in a directory tree named Source, where each

chapter has its own subdirectory. By convention, the names of Visual Basic .NET source files end in “.vb”.

Each chapter contains exercises, some of which have the character * following their number. For each exercise so

marked, a solution is provided in a directory tree named Labs, in which each chapter has its own subdirectory.1

Exercises that are not so marked have no general solution and require experimentation or research in an

implementation's documentation. Exercises having solutions contain a statement of the form “(See lab

directory xx.)”, which indicates the corresponding solution or test file in the Labs subdirectory.

You are strongly encouraged to solve all exercises in one section before continuing to the next. Also, invent your

own exercises as you go and be inquisitive; don't be afraid to experiment. Try to understand why the compiler

gives you each error or why a program fails at run time.

The Status of Visual Basic .NET

Microsoft announced the Visual Basic .NET language and .NET platform in July 2000. At that time, Microsoft stated

that some subset of the library and runtime environment would be submitted for standardization, to Ecma

International, a standards organization. In September 2000, Ecma committee TC39, which was responsible for

standardization of the scripting language ECMAScript (known commercially as JavaScript and JScript), agreed to

take on this new work. As a result, TC39 was split into three Task Groups: TG1 (ECMAScript), TG2 (C#), and TG3

(Common Library Infrastructure [CLI]). This author served as project editor of the standards produced by TG2 and

TG3.

The submission to Ecma was sponsored by Hewlett-Packard, Intel, and Microsoft. A number of other companies

also agreed to participate in the standards work, which began in November 2000. That work was completed in

September 2001, and the CLI (and C#) standard was adopted by Ecma in December 2001. The standard for CLI is

ECMA-335. (This standard can be downloaded free of charge from www.ecma-international.org.)

In January 2002, a 6-month review and ballot period began within ISO/IEC JTC 1 to determine if this specification

should be adopted as an ISO/IEC standard as well. After a ballot-resolution meeting in September 2002, this

specification was approved unanimously, and it was forwarded to ISO for publication. The designation of the CLI

standard is ISO/IEC 23271. (See www.iso.org.)

A revision of the Ecma version of this standard started in January 2003, and was completed in March 2005. Ecma

adopted it in June 2005, and ISO/IEC JTC 1 adopted it in April 2006.

In 2008, Ecma transferred the Task Groups TG2 (C#) and TG3 (CLI) from Technical Committee TC39 to TC49.

The Visual Basic .NET language itself has not been standardized.

Rex Jaeschke, September 2009

1
 The solutions are only available to licensees of these materials when they are used in formal training scenarios.

www.ecma-international.org

1. Threads

© 2002, 2009 Rex Jaeschke. 1

1. Threads

Visual Basic .NET supports the ability to create multiple threads of execution within a single application. In this

chapter, we'll see how threads are created and synchronized.1 We'll also see how shared variables can be guarded

against compromise during concurrent operations.

1.1 Introduction

A thread is an individual stream of execution as seen by the processor, and each thread has its own register and

stack context. The run-time environment executes only one thread at a time. The execution of a thread is

interrupted when it needs resources that are not available, it is waiting for an operation such as an I/O to

complete, or if it uses up its processor time slice. When the processor changes from executing one thread to

another, this is called context switching. By executing another thread when one thread becomes blocked, the

system allows processor idle time to be reduced. This is called multitasking.

When an application is executed, the system is told where on disk to get instructions and shared data. A set of

virtual memory locations, collectively called an address space is allocated to that application, as are various

system resources. This runtime context is called a process. However, before a process can do any work, it must

have at least one thread. When each process is created, it is automatically given one thread, called the primary

thread. However, this thread has no more capability than other threads created for that process; it just happened

to the first thread created for that process. The number of threads in a process can vary at runtime, under

application control. Any thread can create other threads; however, a creating thread does not in any sense own

the threads it creates; all threads in a process belong to the process as a whole.

The work done by a process can be broken into subtasks with each being executed by a different thread. This is

called multithreading. Each thread in a process shares the same address space and process resources. When the

last remaining thread in a process terminates, the parent process terminates.

Why have more than one thread in a process? If a process has only one thread, it executes serially. When the

thread is blocked, the system is idle if no other process has an active thread waiting. This may be unavoidable if

the subtasks of the process must be performed serially; however, this is not the case with many processes.

Consider a process that has multiple options. A user selects some option, which results in lots of computations

using data in memory or a file and the generation of a report. By spawning off a new thread to perform this work,

a process can continue accepting new requests for work without waiting for the previous option to complete. And

by specifying thread priorities, a process can allow less-critical threads to run only when more-critical threads are

blocked.

Once a thread has been dispatched, another thread can be used to service keyboard or mouse input. For example,

the user might decide that a previous request is not the way to go after all, and wishes to abort the first thread.

This can be done by selecting the appropriate option on a pull-down menu and having one thread stop the other.

1
 It is important to note that Visual Basic .NET does not support synchronization of threads in different applications.

Advanced Programming in Visual Basic .NET

2 © 2002, 2009 Rex Jaeschke.

Another example involves a print spooler. Its job is to keep a printer busy as much as possible and to service print

requests from users. The users would be very unhappy if the spooler waits until a job had completed printing

before it started accepting new requests. Of course, it could periodically stop printing to see if any new requests

were pending (this is called polling), but that wastes time if there are no requests. And if the time interval

between polls is too long, there is a delay in servicing requests. If it is too short, the thread spends too much time

polling. Why not have the spooler have two threads: one to send work to the printer, the other to deal with

requests from users. Each runs independent of the other and when a thread runs out of work, it either terminates

itself or goes into an efficient state of hibernation.

When dealing with concurrently executing threads, we must understand two important aspects: atomicity and

reentrancy.

An atomic variable or object is one that can be accessed as a whole even in the presence of asynchronous

operations that access the same variable or object. For example, if one thread is updating an atomic variable or

object while another thread reads its contents, the logical integrity of those contents cannot be compromised—

the read will get either the old or the new value, never part of each. Normally, the only things that can be

accessed atomically are those having types supported atomically in hardware, such as bytes and words. All the

primitive types in Visual Basic .NET except Date, Decimal, Double and Long are guaranteed to be atomic.

Clearly, a Point object is not atomic; it has two parts, an x- and a y-coordinate, and a writer of a Point's value could

be interrupted by a reader to that Point, resulting in the reader getting the new x and old y, or vice-versa.

Similarly, arrays cannot be accessed atomically. Since most objects cannot be accessed atomically, we must use

some form of synchronization to ensure that only one thread at a time can operate on certain objects. For this

reason, Visual Basic .NET assigns each object, array, and class a synchronization lock.

A reentrant procedure is one that can safely be executed in parallel by multiple threads of execution. When a

thread begins executing a procedure, all data allocated in that procedure comes either from the stack or the heap.

In any event, it's unique to that invocation. If another thread begins executing that same procedure while the first

thread is still working there, each thread's data will be kept separate. However, if that procedure accesses

variables or files that are shared between threads, it must use some form of synchronization.

1.2 Creating Threads

In the following example (see directory Th01), the primary thread creates two other threads, and the three

threads run in parallel without synchronization. No data is shared between the threads and the process

terminates when the last thread terminates:

Imports System.Threading

Public Class Th01

 Private loopStart As Integer

 Private loopEnd As Integer

 Private dispFrequency As Integer

1. Threads

© 2002, 2009 Rex Jaeschke. 3

 Public Sub New(ByVal startValue As Integer, ByVal endValue As Integer, _

 ByVal frequency As Integer)

 loopStart = startValue

 loopEnd = endValue

 dispFrequency = frequency

 End Sub

'1

 Public Sub ThreadEntryPoint()

'2

 Dim threadName As String = Thread.CurrentThread.Name

 Dim i As Integer = loopStart

 While i <= loopEnd

 If i Mod dispFrequency = 0 Then

 Console.WriteLine("{0}: i = {1,10}", threadName, i)

 End If

 i += 1

 End While

 Console.WriteLine("{0} thread terminating", threadName)

 End Sub]

 Public Shared Sub Main()

'3a

 Dim o1 As New Th01(0, 1000000, 200000)

'3b

 Dim t1 As New Thread(AddressOf o1.ThreadEntryPoint)

'3c

 t1.Name = "t1"

'4a

 Dim o2 As New Th01(-1000000, 0, 200000)

'4b

 Dim t2 As New Thread(AddressOf o2.ThreadEntryPoint)

'4c

 t2.Name = "t2"

'5

 t1.Start()

'6

 t2.Start()

 Console.WriteLine("Primary thread terminating")

 End Sub

End Class

Let's begin by looking at the first executable statement in the program, that in case 3a. Here we create an object

having the user-defined type Th01. That class has a constructor, an instance procedure, and three fields. We call

the constructor passing it a start and end count, and an increment amount, which it stores for later use in

controlling a loop.

2. Object Serialization

© 2002, 2009 Rex Jaeschke. 21

2. Object Serialization

Most useful applications depend on information of a more permanent nature than that generated during a single

execution. For example, applications that access an inventory, typically query (and possibly update) one of more

related data files. The lives of such “master files” transcend that of the execution of any of the applications that

use them. Other applications involve the communication of messages between separate applications, often

referred to as client and server. While the life of a message is often much shorter than that of a database record,

both cases involve the use of some data format external to the applications that manipulate them.

In this chapter, we'll see how Visual Basic .NET objects and variables of simple types can be converted into some

external form suitable for use in file storage or for transmission during inter-application communication. The

process of converting to some external form is known as serialization while that of converting back again is known

as deserialization.

2.1 Introduction

Consider the following example (see directory Sr01) which writes a number of values of a variety of object and

simple types to a disk file, closes that file, and then reads those values back into memory again:

Imports System.IO

Imports System.Runtime.Serialization.Formatters.Binary

Public Module Sr01

 Public Sub Main()

 Dim intArray() As Integer = {10, 20, 30

 Dim floatArray(,) As Single = { _

 {1.2F, 2.4F}, _

 {3.5F, 6.8F}, _

 {8.4F, 9.7F} _

 }

 Dim dt As DateTime = DateTime.Now

 Console.WriteLine("dt >{0}<", dt)

'1

 Dim formatter As New BinaryFormatter()

In case 1, we define a variable of type BinaryFormatter. Objects of this type allow the serialization and

deserialization of any object or an entire graph1 of connected objects in some binary format. (We'll see in §2.6

how alternate formats can be used.)

1
 The term graph as used here refers to a kind of nonlinear data structure. For example, an Employee type might contain a

name field, which, in turn, is made up of a first name, an initial, and a last name. The type might also contain several date
objects, representing date of birth, date of hire, and date of last review. The graph designated by a reference to an instance
to such a type involves all of that instance's dependent data tree starting at the root reference.

Advanced Programming in Visual Basic .NET

22 © 2002, 2009 Rex Jaeschke.

 ' Serialize data to a f.

'2

 Dim f As Stream = File.Open("Sr01.ser", FileMode.Create)

'3a

 formatter.Serialize(f, "Hello")

'3b

 formatter.Serialize(f, intArray)

'3c

 formatter.Serialize(f, floatArray)

'3d

 formatter.Serialize(f, True)

'3e

 formatter.Serialize(f, dt)

'3f

 formatter.Serialize(f, 1000)

'3g

 formatter.Serialize(f, "X"c)

'3h

 formatter.Serialize(f, 1.23456F)

'4

 f.Close()

In case 2, we create a new file having the name shown. The suffix “.ser” has no special meaning; it is simply a local

convention that signifies a serialized data file. Cases 3a through 3h each result in an object being serialized to that

file. In the case of the string, each character is written. In the case of the arrays, all elements are written. In the

case of the DateTime, all data contained within that type and any associated dependencies are written. In the

case of the simply type values, they are first boxed and the corresponding Objects are written. So Serialize

need only be defined to accept an argument of type Object.

 ' Deserialize data from a f.

'5

 f = File.Open("Sr01.ser", FileMode.Open)

'6a

 Dim s As String = CStr(formatter.Deserialize(f))

 Console.WriteLine("String >{0}<", s)

We retrieve the serialized data by calling the procedure Deserialize, as shown in case 6a. Since that procedure

returns a value of type Object, we need to convert that to the appropriate type.

2. Object Serialization

© 2002, 2009 Rex Jaeschke. 23

'6b

 Dim newIntArray() As Integer = CType(formatter.Deserialize(f), _

 Integer())

 Console.WriteLine("newIntArray:")

 Dim i As Integer = 0

 While i < newIntArray.Length

 Console.Write(" {0}", newIntArray(i))

 i += 1

 End While

 Console.WriteLine()

'6c

 Dim newSingleArray(,) As Single = _

 CType(formatter.Deserialize(f), Single(,))

 Console.WriteLine("newSingleArray:")

 i = 0

 While i < 3

 Dim j As Integer = 0

 While j < 2

 Console.Write(" {0}", newSingleArray(i, j))

 j += 1

 End While

 Console.WriteLine()

 i += 1

 End While

'6d

 Dim b As Boolean = CBool(formatter.Deserialize(f))

 Console.WriteLine("Boolean >{0}<", b)

'6e

 Dim newDT As DateTime = CDate(formatter.Deserialize(f))

 Console.WriteLine("newDT >{0}<", newDT)

'6f

 Dim v As Integer = CInt(formatter.Deserialize(f))

 Console.WriteLine("Integer >{0}<", v)

'6g

 Dim c As Char = CChar(formatter.Deserialize(f))

 Console.WriteLine("Char >{0}<", c)

'6h

 Dim sn As Single = CSng(formatter.Deserialize(f))

 Console.WriteLine("Single >{0}<", sn)

'7

 f.Close()

 End Sub

End Module

When executed on the date and time shown, the output produced is:

4. Cloning Objects

© 2002, 2009 Rex Jaeschke. 53

4. Cloning Objects

Unlike most other languages, Visual Basic .NET provides no way to have an expression of some object type; the

best we can do is to have an expression whose value is really a reference to that type. As a result, Visual Basic

.NET provides no linguistic way to copy an object. Assuming we can justify it, how then can we make a complete

copy of an object?

4.1 Copying by Constructor

Consider the following code fragment (see directory Cn01):

Public Class Point

 ' ...

 Public Sub New(ByVal xorigin As Integer, ByVal yorigin As Integer)

 X = xorigin

 Y = yorigin

 End Sub

 Public Sub New(ByVal p As Point)

 X = p.X

 Y = p.Y

 End Sub

 ' ...

End Class

The constructor creates a new Point using the contents of an existing one. (In C++, this kind of constructor is so

special it has the name copy constructor; however, this term is not used in the context of Visual Basic .NET.)

Public Module Cn01

 Public Sub Main()

'1

 Dim p1 As New Point(3, 5)

'2

 Console.WriteLine("p1: {0}", p1)

'3

 Dim p2 As New Point(p1)

'4

 p1.Move(9, 11)

'5

 Console.WriteLine("p1: {0}", p1)

'6

 Console.WriteLine("p2: {0}", p2)

 End Sub

End Module

Advanced Programming in Visual Basic .NET

54 © 2002, 2009 Rex Jaeschke.

Point p2 is a copy of p1, so when the coordinate values of p1 are changed in case 4, we see from the following

output that those of p2 are not:

p1: (3,5)

p1: (9,11)

p2: (3,5)

While this approach works fine, we won't find standard library classes having this form of constructor, however.

4.2 Class Cloning

Those few standard library classes that do support some sort of copy mechanism achieve it by what is referred to

as cloning. Consider the following example (see directory Cn02) that uses the library class ArrayList, a type that

supports vectors:

Imports System.Collections

Public Module Cn02

 Public Sub Main()

 Dim al1 As New ArrayList()

'1

 al1.Add("Red")

 al1.Add("Blue")

 al1.Add("Green")

 al1.Add("Yellow")

'2

 PrintEntries("al1", al1)

'3

 Dim al2 As ArrayList = CType(al1.Clone(), ArrayList)

'4

 PrintEntries("al2", al2)

'5

 al1.Remove("Blue")

 al1.Add("Black")

 al1.RemoveAt(0)

 al1.Insert(0, "Brown")

'6

 PrintEntries("al1", al1)

'7

 PrintEntries("al2", al2)

 End Sub

4. Cloning Objects

© 2002, 2009 Rex Jaeschke. 55

 Private Sub PrintEntries(ByVal s As String, ByVal aList As ArrayList)

 Console.Write("{0: ", s)

 Dim o As Object

 For Each o In aList

 Console.Write(vbTab + "{0}", o)

 Next

 Console.WriteLine()

 End Sub

End Module

The output produced is:

al1: Red Blue Green Yellow

al2: Red Blue Green Yellow

al1: Brown Green Yellow Black

al2: Red Blue Green Yellow

ArrayList al1 consists of a set of 4 strings specifying different colors. We then make a complete copy of that

object in case 3 by calling the procedure ArrayList.Clone, so the output produced by cases 2 and 4 is the

same. Then we modify al1 by removing the second element, by adding a new element to the end, and by

changing the first element's value. When we compare the output produced by cases 6 and 7, we see that the

changes applied to al1 have no affect on al2. Specifically, the internal reference inside of al2 points to its own

private copy of elements, not to the same set as al1. This is referred to as a deep copy, whereas simply making

both ArrayLists' internal reference point to the same set of values (as would be the case with the assignment

al2 = al1) is called a shallow copy.

If we wish to make copies of our own objects, we would do well to model the copy process on the library cloning

machinery.

4.3 The Procedure Clone

The key to cloning is to implement the standard interface ICloneable, which, in turn, requires us to define a

procedure called Clone that takes no arguments and has a return type of Object. For example, consider the

following program fragment (see directory Cn03):

Public Class Point

 Implements ICloneable

 '...

 Public Sub New(ByVal xorigin As Integer, ByVal yorigin As Integer)

 X = xorigin

 Y = yorigin

 End Sub

	Preface
	Reader Assumptions
	Presentation Style
	Exercises and Solutions
	The Status of Visual Basic .NET

	Threads
	Introduction
	Creating Threads
	Synchronized Statements
	Other Forms of Synchronization
	Managing Threads
	Thread-Local Storage
	Atomicity and Interlocked Operations

	Object Serialization
	Introduction
	Serializing Objects that Contain References
	Handling Multiple References
	Customized Serialization
	Identifying the Fields to be Serialized
	Serialization Format
	Type Packaging

	Sockets
	Introduction
	Server-Side Sockets
	Client-Side Sockets
	Serialization over Sockets

	Cloning Objects
	Copying by Constructor
	Class Cloning
	The Procedure Clone
	Using Object.MemberwiseClone
	Cloning Arrays
	Cloning and Derived Classes
	Creation without Construction

	Attributes
	Introduction
	Predefined .NET Attributes
	StructLayout and FieldOffset
	DllImport
	CLSCompliant
	Obsolete
	Custom Attributes

	Operator Precedence
	Visual Basic .NET Keywords
	Index

