

Programming in

Visual Basic .NETTM

Rex Jaeschke

Programming in Visual Basic .NET

ii © 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke.

© 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke. All rights reserved.

Edition: 2.0

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means whatsoever, except in the case of brief quotations embodied in critical reviews and

articles.

The information in this book is subject to change without notice. It should not be construed as a commitment by

the author or the publisher. Although every precaution has been taken in the preparation of this book, the author

and the publisher assume no responsibility for errors or omissions.

Java and JavaScript are trademarks of Sun Microsystems.

.NET, Visual Basic, Visual C#, Visual C++, Visual Studio, and JScript are trademarks of Microsoft.

The training materials associated with this book are available for license. Interested parties should contact the

author at the address below.

Please address comments, corrections, and questions to the author:

Rex Jaeschke

2051 Swans Neck Way

Reston, VA 20191-4023

+1 (703) 860-0091

+1 (703) 860-3008 (fax)

www.RexJaeschke.com

rex@RexJaeschke.com

http://www.rexjaeschke.com/
mailto:rex@RexJaeschke.com

Table of Contents

© 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke. iii

Preface vii

Visual Basic .NET's Design Goals .. viii
Reader Assumptions .. viii
Limitations .. ix
Presentation Style .. ix
Exercises and Solutions ... x
The Status of Visual Basic .NET ... x

1. The Basics .. 1

1.1 Basic Program Structure .. 1
1.2 Identifiers ... 7
1.3 Introduction to Formatted Output .. 8
1.4 Data Types ... 15

1.4.1 The Boolean Type .. 15
1.4.2 The Integer Types .. 15
1.4.3 The Floating-Point Types ... 18
1.4.4 The Decimal Type .. 19
1.4.5 Enumeration Types .. 20
1.4.6 User-Defined Types ... 22
1.4.7 The String Type .. 22
1.4.8 The Date Type ... 24
1.4.9 Old-Style Declarations ... 24

1.5 Literals.. 24
1.5.1 Boolean literals .. 24
1.5.2 Character Literals ... 24
1.5.3 String Literals ... 25
1.5.4 Integer Literals ... 25
1.5.5 Floating-Point Literals .. 26
1.5.6 Decimal Literals ... 26
1.5.7 Date Literals ... 27

1.6 Type Characters ... 28
1.7 Constants ... 28
1.8 Operator Precedence... 29
1.9 Type Conversion .. 30
1.10 Arithmetic Overflow .. 33
1.11 Module, Structure, and Class Members .. 34

2. Looping, Testing, and Branching ... 41

2.1 The While Statement ... 41
2.2 The For Statement .. 44
2.3 The Do Statement .. 45
2.4 The If/Else Statement .. 46
2.5 The Return Statement ... 49
2.6 The Continue Statement ... 49
2.7 The GoTo Statement .. 49
2.8 The Select Statement ... 50

3. Procedures ... 55

3.1 Introduction ... 55
3.2 Passing Arguments... 58

3.2.1 Passing by Value .. 58

Programming in Visual Basic .NET

iv © 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke.

3.2.2 Passing by Reference ... 59
3.2.3 Optional and Positional Arguments... 60

3.3 Recursion ... 61
3.4 Argument Type Matching .. 62
3.5 Static Variables .. 63
3.6 Overloaded Procedures ... 64
3.7 Generic Procedures ... 68
3.8 Issues Regarding Main ... 69
3.9 Variable-Length Argument Lists .. 70
3.10 Programs, Assemblies, and Accessibility ... 70

4. References, Strings, and Arrays .. 77

4.1 Introduction ... 77
4.2 Sharing of Like Strings .. 83
4.3 Passing and Returning References .. 83
4.4 Allocating Memory for Objects .. 85
4.5 Releasing Allocated Memory ... 86
4.6 Arrays ... 88

4.6.1 Command-Line Arguments .. 98
4.6.2 Copying Arrays ... 99

4.7 Variable-Length Argument Lists .. 106
4.8 Modifiable Strings .. 107

5. Classes ... 111

5.1 Introduction ... 111
5.2 Class-Specific Procedures .. 113
5.3 Data Hiding within a Class ... 116
5.4 The Reference Variable Me .. 122
5.5 Shared Fields and Procedures Revisited .. 125
5.6 Containment .. 129
5.7 Copying Objects ... 131
5.8 Object Finalization ... 131
5.9 Resource Disposal .. 133
5.10 Nested Classes ... 136
5.11 Partial Classes .. 138

6. Inheritance .. 139

6.1 Introduction ... 139
6.2 The Is-A versus Has-A Test ... 141
6.3 A Simple Class Hierarchy .. 144
6.4 Abstract Classes and Procedures} .. 148
6.5 Constructor Calls .. 150
6.6 Protected Members ... 152
6.7 Disabling Inheritance ... 154
6.8 Hiding Versus Overriding ... 155
6.9 Disabling Overriding .. 159
6.10 A Universal Base Class ... 160
6.11 Object Finalization Revisited ... 162
6.12 Run-Time Type Checking ... 163
6.13 Arrays and Inheritance .. 167
6.14 Enums and Inheritance .. 167

Table of Contents

© 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke. v

6.15 Value Types and Inheritance ... 169
6.16 Boxing and Unboxing ... 169
6.17 Inheritance After the Fact .. 170
6.18 Interfaces ... 170
6.19 Generic Types .. 174

6.19.1 Defining a Generic Type .. 174
6.19.2 Using a Generic Type ... 177
6.19.3 Generic Type Constraints .. 179

7. Exception Handling .. 181

7.1 Introduction ... 181
7.2 Catching Exceptions ... 182
7.3 Throwing Exceptions .. 184
7.4 Handling Families of Exception Types ... 189
7.5 Catching Unexpected Exceptions .. 190
7.6 Miscellaneous Issues ... 191
7.7 A Final Note ... 191

8. Operator Overloading .. 193

8.1 Introduction ... 193
8.2 A Simple Example .. 194
8.3 A Vector Class .. 196
8.4 Overloading Unary Operators .. 199
8.5 Overloading Binary Operators ... 200
8.6 Conversion Operators .. 201
8.7 Some Rules of Thumb .. 203

9. Delegates and Events ... 205

9.1 Introduction ... 205
9.2 Passing and Returning Delegates... 207
9.3 Delegate Type Compatibility.. 209
9.4 Arrays of Delegates .. 210
9.5 Combining Delegates ... 212
9.6 System.Delegate .. 216
9.7 Events .. 219

10. Structures .. 223

10.1 Introduction ... 223
10.2 A Complex Number Example ... 226
10.3 Simple Type Mapping .. 229
10.4 Miscellaneous Notes .. 229

11. Namespaces ... 231

11.1 Introduction ... 231
11.2 Declaring Namespaces ... 233
11.3 Imports Namespace Directives ... 235
11.4 The Standard Namespaces .. 235
11.5 Namespace Aliases .. 238
11.6 Access Modifiers .. 239

12. Input and Output ... 241

12.1 Introduction ... 241

Programming in Visual Basic .NET

vi © 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke.

12.2 The Basic I/O Classes ... 243
12.3 File I/O ... 245
12.4 String I/O .. 248
12.5 Typed Unformatted I/O ... 249
12.6 Random Access I/O .. 251
12.7 File and Directory Operations .. 253
12.8 Miscellaneous Issues ... 255

13. The Preprocessor ... 257

13.1 Introduction ... 257
13.2 Conditional Compilation Constants ... 257
13.3 Conditional Compilation .. 257
13.4 Region Directives ... 259

Annex A. Operator Precedence ... 261

Annex B. Visual Basic .NET Keywords .. 265

Index ... 267

Preface

© 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke. vii

Preface

Throughout this book, we will look at the statements and constructs of the Visual Basic .NET programming

language. Each statement and construct will be introduced by example with corresponding explanations, and,

except where errors are intentional, the examples will be complete programs or procedures that are error-free. I

encourage you to run and modify these examples, because the only realistic way to master a language is to write

programs in it, run them, and debug them.

This book has been written with teaching in mind and has evolved from an earlier series on C, C++, Java, and C#. It

has been written for use both in a classroom environment as well as for self-paced learning.

Visual Basic .NET is a robust, general-purpose, high-level language that supports object-oriented programming

(OOP). It contains significant extensions to its very popular predecessors, Visual Basic, versions 1–6.

Visual Basic .NET supports the 16-bit character set ISO 10646 UCS-2—commonly known as Unicode, of which

ASCII is a proper subset. (Character codes 0–127 represent the same characters in both sets.) As such, it does not

suffer from many of the difficulties faced by other languages that were designed primarily to support a “USA-

English” mode of programming.

With the .NET extensions, the language encourages a structured, modular approach to programming through the

use of classes, structures, and modules containing callable procedures. Classes, structures, and modules can be

compiled separately, with external references being resolved at runtime.

Visual Basic .NET is an architecturally neutral language that when compiled, results in the generation of Common

Intermediate Language (CIL).1 During program execution, this intermediate language is compiled to native code,

which is then executed. CIL is not language-specific, so a program can be made up from modules written in any

language that can produce CIL.2

There is a fine (and subjective) line between writing code that is terse and code that is cryptic. It is easy to write

code that is unreadable and, therefore, unmaintainable. However, with care and a small dose of discipline, you

can produce nicely formatted code that is easy to read and maintain. But remember, good code doesn't happen

automatically—you have to work at it. Throughout the book, I will make numerous comments and suggestions

regarding style. Perhaps the best advice I can give is “Remember that the poor fool who has to read your code in

the future just might be you!” Above all, be overt and be consistent.

Numerous “Tips” and “Style Tips” have been added throughout to highlight important suggestions. Considerable

attention has been paid to using and teaching a consistent, popular, and overt programming style. Both kinds of

tips are highlighted so they stand out. For example:

1
 Microsoft's current implementation calls this language MSIL. CIL is the name given to it by the Ecma committee that

standardized it.
2
 Currently, compilers for more than 15 different languages produce CIL. These include Microsoft's own Visual Basic .NET,

Visual C++, Visual C#, and JScript.

Programming in Visual Basic .NET

viii © 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke.

Tip: Avoid initializing enumerators explicitly or making duplicates unless you have good reason to

do so. Assigning a range of values that is non-continuous or that contains duplicates significantly

reduces the set of operations that can meaningfully be performed.

Style Tip: Use liberal amounts of white space to improve program readability. The compiler

discards all white space, so its presence has no effect on program execution. Apart from

separating tokens, white space exists solely for the benefit of the reader. If you can't read the

code, you surely won't be able to understand it.

Visual Basic .NET is not all things to all people; nor does it claim to be. For many applications, assembly language,

Pascal, COBOL, FORTRAN, and C++, for example, will do just fine. In any event, compared to other high-level

languages, Visual Basic .NET is a relatively inexpensive language to learn and master. It is certainly much less

expensive to master—and far less error-prone—than C or C++. Learning Visual Basic .NET is comparable to

learning Java or C#.

Visual Basic .NET's Design Goals

The Visual Basic .NET language, library, and run-time environment were designed to deliver the following:

 Code reuse and reduced development effort via object-oriented programming support.

 Extremely broad portability by the elimination of almost all implementation-defined and unspecified

behavior, by the use of an architecturally neutral language.

 Strong type checking.

 Support for threading.

 Easy to learn, read, and write.

 Support for internationalization.

 Support for developing software components.

 Permit easy integration with other languages and operating system environments.

Reader Assumptions

I assume that you know how to use your particular text editor, Visual Basic .NET compiler, and debugger.

Comments on the use of these utility programs will be limited to points of particular interest to the Visual Basic

.NET programmer.

To fully understand and exploit the material, you should be conversant with the following topics:

 The basic purpose of a compiler and linker.

 Number system theory.

 Bit operations such as AND, inclusive-OR, exclusive-OR, complement, and left- and right-shift.

 Data representation.

 Communication between procedures by passing arguments and/or by returning a value, as well as via

global variables.

Preface

© 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke. ix

 Use of single- and multi-dimensional arrays.

 Creation and use of sequential files and how to do formatted and unformatted I/O.

 Basic data structures such as linked lists.

Many of Visual Basic .NET's more powerful capabilities, particularly exception handling, inheritance, and threads,

require advanced programming experience before they can be understood and exploited fully.

Despite the many similarities between Visual Basic .NET, C#, C, C++, and Java, you do not need to know any of

these other languages to use this book. If you do know one or more of them, simply read quickly over those

sections that seem familiar to you. I say “read quickly” rather than “skip” because you may well find that Visual

Basic .NET defines things more fully or a little differently than do C#, C/C++ or Java.

If you already know C#, C++, or Java, the Visual Basic .NET learning curve should be short and not too steep. If you

know C, you have all the OO stuff to learn as well. If you know some OO language other than C#, C++, or Java

you'll already be familiar with the OO concepts, but not the syntax. And if your programming background is in

some procedural language such as Pascal, FORTRAN, or BASIC (including early versions of Visual Basic), you'll need to

read the whole book closely and do all the exercises. As for those of you having only a COBOL background, you'll

have some catching-up to do with respect to thinking in binary versus decimal when it comes to data

representation, as well as the use of procedures and their associated argument passing and value returning.

Note that the transition to Visual Basic .NET from Visual Basic involves more than a little work. A number of

keywords are no longer supported, new keywords exist, whole new constructs have been added, an alternate way

of doing I/O has been added, and the huge .NET class library has been made available. Even a simple call to the

humble square root library procedure has changed. Beware, too much knowledge of Visual Basic might get in the

way, since Visual Basic .NET does business a whole new way when compared to its predecessor.

Limitations

This book covers almost all of the Visual Basic .NET language. It also introduces the core class library. However, a

very small percentage of library facilities are mentioned or covered in any detail. The common library used by

Visual Basic .NET (and any other language that targets CIL) contains so many classes and procedures that whole

books have been written about that subject alone.

Although Visual Basic .NET was designed for use in building software components, this book is directed at

teaching the Visual Basic .NET language proper, by writing simple stand-alone applications, since without a

thorough knowledge of the language, you will not be able to understand and implement other, more advanced,

solutions.

GUI, calling non-Visual Basic .NET routines, threading, inter-process communications, and a number of other

advanced features are covered in a separate text.

Presentation Style

The approach used in this book is different from that used in many other books and training courses. Having

developed and delivered programming language training courses for some 15 years, I have found that the best

approach for my students is an incremental one. I avoid introducing things that are unnecessary at any given time,

thus making examples small, simple, and well focused. Specifically, I introduce the basic elements and constructs

Programming in Visual Basic .NET

x © 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke.

of the language using procedural programming examples. Once those fundamentals have been mastered, I move

on to object-oriented concepts and syntax. Then come the more advanced language topics and library usage.

Many books on object-oriented languages use objects, inheritance, exception handling, GUI, and numerous non-

trivial library facilities in the first few examples, and certainly in the first chapter. I do not care for this approach,

either as a reader or as an educator. Instead, I prefer the student to have an excellent chance of understanding

and absorbing small amounts of new material, and reinforcing it with lab sessions, as they progress. The intent

here is to eliminate any chance of their being overwhelmed, provided, of course, they meet the prerequisites.

Different styles work for different teachers and different students. I do not suggest that my approach is better

than any other; I simply know that my approach works well, and has formed the basis of my successful seminar

business for more than a decade.

Exercises and Solutions

The programs shown in the text are available electronically in a directory tree named Source, where each

chapter has its own subdirectory. By convention, the names of Visual Basic .NET source files end in .vb.

Each chapter contains exercises, some of which have the character * following their number. For each exercise so

marked, a solution is provided in a directory tree named Labs, in which each chapter has its own subdirectory.1

Exercises that are not so marked have no general solution and require experimentation or research in an

implementation's documentation. Numerous exercises contain a statement of the form “(See lab directory xx.)”'

This indicates the corresponding solution or test file in the Labs subdirectory.

You are strongly encouraged to solve all exercises in one section before continuing to the next. Also, invent your

own exercises as you go and be inquisitive; don't be afraid to experiment. Try to understand why the compiler

gives you each error or why a program fails at run time.

The Status of Visual Basic .NET

Microsoft announced the Visual Basic .NET (and .NET platform) in July 2000. The first full implementation was

called Visual Basic .NET 2002, the second, 2005, and the third, 2008. Unless stated otherwise in this book, a

feature was present from the beginning; that is, in the 2002 release.

Visual Basic .NET 2005 added the following new features: XML comments; the signed byte type SByte; the

unsigned integer types UShort, UInteger, and ULong; different accessibility for a property’s setter and getter;

partial classes, the Continue statement; generic procedures, the Using statement, the IsNot operator, the

TryCast statement; operator overloading, and the keyword Global.

Most of the features added in Visual Basic .NET 2008 were in support of Language-Integrated Query (LINQ) and

XML processing, neither of which is covered by this book.

Rex Jaeschke, September 2009

1
 The solutions are only available to licensees of these materials when they are used in formal training scenarios.

1. The Basics

© 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke. 1

1. The Basics

In this chapter, we will learn about a number of fundamental constructs and language elements. The main topics

covered include basic program structure, user-defined names, basic formatted output, data types, literals,

constants, operator precedence, type conversion, arithmetic overflow, and the use of basic library facilities.

1.1 Basic Program Structure

A correct source program is made up of an acceptable combination of tokens, where a token is the smallest

possible unit of source. Visual Basic .NET has a number of different kinds of tokens: identifiers, keywords, literals,

operators, and separators.

With respect to source code format, Visual Basic .NET allows more freedom than some languages, but less than

others. While space between tokens is usually optional, in some cases, something is needed between tokens so

they can be recognized the way they were intended. White space performs this function. White space consists of

one or more consecutive space and/or horizontal tab characters. Under certain conditions, newline characters

are required or permitted. The newline character is entered by pressing the RETURN or ENTER key. In any source

file, an arbitrary amount of white space is permitted before the first token, between any two adjacent tokens, or

after the last token.

Style Tip: Use liberal amounts of white space to improve program readability. The compiler

discards all white space, so its presence has no effect on program execution. Apart from

separating tokens, white space exists solely for the benefit of the reader. If you can't read the

code, you surely won't be able to understand it.

Let's look at the basic structure of a Visual Basic .NET program (see directory Ba01):

' Ba01.vb - A sample Visual Basic .NET program

'

REM In case 1 below, the text "Welcome to Visual Basic .NET"

REM is written to the standard output device.

'

' In case 2, the Main procedure returns to its caller.

Programming in Visual Basic .NET

2 © 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke.

Public Module Ba01

 Public Sub Main() ' program starts here

'1

 System.Console.WriteLine("Welcome to Visual Basic .NET")

'2

 Return ' redundant

 End Sub

End Module

The output produced is

Welcome to Visual Basic .NET

A program may contain textual comments. A comment begins with a single quote character (') and runs to the

end of that physical source line. As such, a comment may occupy a whole physical source line or the trailing part

of a such a line. No white space is needed between the quote and the text that follows. An alternate way of

starting a comment is to use the keyword REM (an historical abbreviation for “Remark”). For this keyword to be

recognized as such, it must be separated from the text of the comment by white space. Throughout this book we

will use the single quote form.

Visual Basic .NET 2005 added the capability to put documentation at certain places in source code, in the form of

XML. This capability is called XML Comments. Such comments begin with three single quote characters (''') , and

are not discussed further in this book.

Note the unusual comments, '1 and '2, in the example above. Throughout this book, such comments are used

to give source lines pseudo-labels, so they can be referenced directly in the narrative. In production code, this

approach can also be used, as follows: A comment prior to a procedure provides a general introduction and

describes the steps used to implement the solution. By giving each step a label, we can place a comment

containing that label prior to the first statement that implements that step. For example, in the program above,

the introductory comment mentions step 1, and the comment '1 shows where that step is implemented. (Steps

are referred to in the narrative as cases.)

A Visual Basic .NET program consists of one or more procedures that can be defined in one or more source files.

(A procedure corresponds to what some other languages refer to as a method, a function, or a subroutine.) A

program must contain at least one procedure, called Main.1 This specially named procedure indicates where the

program is to begin execution.

Each procedure can have one or more modifiers; Main has one, Public. Names having this modifier are visible

outside their parent module. And since the procedure Main needs to be accessed by the program execution

machinery—which is outside the module Ba01—the Public modifier is needed. The keyword Sub preceding the

procedure name Main indicates that this procedure is a subroutine; that is, it does not return a value. (Main is

permitted to return an integer value to the execution environment. That is, it is permitted to be a function. This is

discussed in §3.7.)

1
 This is only true for a ”Console Application”; a Windows Application need not have such a procedure.

4. References, Strings, and Arrays

© 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke. 77

4. References, Strings, and Arrays

In this chapter, we will learn about reference variables, the allocation of memory at runtime using the class

String, New, garbage collection, and array allocation and manipulation.

4.1 Introduction

There are two categories of types in Visual Basic .NET: simple and reference. We have already seen examples of

the simple types, Boolean, SByte, Byte, Short, UShort, Integer, UInteger, Long, ULong, Decimal, Char,

Single, Double, Date, and Enum types.

In the definition Dim i as Integer, i is a variable and the name i designates some specific storage location in

memory. We say that the value of i is some Integer. Throughout its life, that variable is always associated with

the same location. (This may seem obvious based on your experience with other languages, but it's most

important to understand when we look at reference types.) To help us understand reference types, let's look at

the following example (see directory Rf01):

Public Module Rf01

 Public Sub Main()

'1

 Dim name As String = "John"

'2

 Console.WriteLine("name is >{0}<", name)

“John”name

'3

 name = "Jennifer"

 Console.WriteLine("name is >{0}<", name)

“Jennifer”name

'4

 name = "Jennifer" + " Jones"

 Console.WriteLine("name is >{0}<", name)

“Jennifer Jones”name

Programming in Visual Basic .NET

78 © 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke.

'5

 name = Nothing

Nothingname

'6

 Console.WriteLine("name is >{0}<", name)

 End Sub

End Module

The output produced is:

name is >John<

name is >Jennifer<

name is >Jennifer Jones<

name is ><

The keyword String is nothing more than an alias for the predefined library class String.String. Writing the

keyword String is exactly the same as writing System.String, and vice versa. An object type is often called a

class type. Unlike some languages, a string is not an array of Byte nor is it an array of Char; it is a sequence of

Unicode characters. The contents of an object of type String cannot be modified.1

In case 1, we define a variable called name. At first glance we might think that name is a variable of type String

and that it contains the value "John" directly; however, that is not the case. Instead, name is a reference to that

string; that is, name does not actually contain that data, it simply points to that data, which resides elsewhere. (In

the case of a string literal, the data representing that string really has no name.) We say that name is a reference

variable and that its type is “reference to String”.

In case 3, name is made to refer to a different string. The important thing to understand here is that name “has

been made to point” to a different string; the value of the string "Jennifer" has not been copied anywhere.

In case 4, the two strings are concatenated resulting in a third string to which name is made to point. Because a

string's value is read-only, the second string cannot simply be appended to the end of the first one.

A simple variable can only ever contain a value of its type. However, a reference variable can hold either a

reference to an object that is assignment compatible with the type of that variable, or the null reference. Case 5

introduces the name Nothing. By initializing a reference with the value Nothing, we make it point “nowhere”.

The output produced by case 6 shows us that when the value of a reference containing Nothing is used in string

concatenation, an empty string results.

The default initial value of String variables is the null value Nothing. However, when a null-valued String

reference participates in string concatenation, it is treated as an empty string.

1
 The library class StringBuilder is similar to String except that objects of type StringBuilder can have their contents

changed. See §4.8

4. References, Strings, and Arrays

© 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke. 79

There can be any number of references to the same object. For example (see directory Rf02):

Public Module Rf02

 Public Sub Main()

 Dim name1 As String = "Mary"

'1

 Dim name2 As String = name1

'2

 Dim name3 As String = name2

“Mary”name1

name2

name3

 Console.WriteLine("name1 is {0}", name1)

 Console.WriteLine("name2 is {0}", name2)

 Console.WriteLine("name3 is {0}", name3)

'3

 name1 = "Jennifer"

“Mary”

name1

name2

name3

“Jennifer”

 Console.WriteLine(vbCrLf + "name1 is {0}", name1)

 Console.WriteLine("name2 is {0}", name2)

 Console.WriteLine("name3 is {0}", name3)

 End Sub

End Module

The output produced is:

5. Classes

© 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke. 111

5. Classes

Classes are the key foundation stone of object-oriented programming. By using classes, we can take advantage of

encapsulation, data hiding, inheritance, and polymorphism, the first two of which are discussed in this chapter.

5.1 Introduction

So far, we've been creating variables of simple types, arrays of those types, and strings. And while we can do

useful programming with these types, eventually we'll need more complex and sophisticated data types. For

example, in a personnel system, we might want an Employee type, containing employee name, address, date of

birth, veteran status, and other descriptive information. In a library catalog system, we'll probably want to keep

track of each book's call number, author, title, year of publication, and the like, in some kind of a Publication type.

Neither of these types can be accommodated directly by the types we have seen.

Throughout this and future sections, we'll use Point as our user-defined type. A Point represents a location in a

two-dimensional plane. This simple type is something with which we can easily relate and it serves nicely to

introduce the class support machinery. Even if you don't write graphics programs, it should be very easy to

extrapolate from the principles learned here.

Let's define our new Point type (see directory Point in directory Cl01):

Public Class Point

 ' instance variables

'1

 Public xorigin As Integer

'2

 Public yorigin As Integer

End Class

Instead of using Module, we are using Class. Back in §1.11, we learned that variables defined inside a module

(rather than inside a procedure) are module variables; that is, they are variables belonging to the module as a

whole. Classes can also contain variables. A class can also have variables that belong to the class as a whole,

provided they have the modifier Shared. Class variables not having this modifier are instance variables; xorigin

and yorigin are examples. (Together, class and instance variables are known as fields.) We can create an

arbitrary number of Point objects, each of which contains an x- and y-coordinate pair; that is, each instance of

class Point contains a unique pair of instance variables, since each Point's representation is separate from those of

all other Points, even for Points that happen to have the same coordinate values.

Note that when a variable definition contains an access keyword (such as Public, Private, or Friend), the Dim

keyword can be omitted.

Programming in Visual Basic .NET

112 © 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke.

The following program (see directory Cl01) creates and manipulates several Points:

Public Module Cl01

 Public Sub Main()

'3

 Dim p1 As Point = New Point()

'4

 Console.WriteLine("p1 = ({0,{1)", p1.xorigin, p1.yorigin)

'5

 p1.xorigin = 5

'6

 p1.yorigin = 7

 Console.WriteLine("p1 = ({0},{1})", p1.xorigin, p1.yorigin)

'7

 Dim p2 As New Point()

'8

 p2.xorigin += -4

'9

 p2.yorigin += 12

 Console.WriteLine("p2 = ({0},{1})", p2.xorigin, p2.yorigin)

 End Sub

End Module

In case 3, we allocate memory for a Point using New, just like we did for strings in §4.1. Creating an instance of a

class is known as instantiation. By default, all instance variables take on a zero, false, or null value, depending on

their type. Like strings and Points, all objects of user-defined class types must be allocated on the heap using New.

To access the instance variables, we simply prefix their names with the name of their parent, as in case 4. Note

that this is different to the way in which we have been accessing module (or class) variables, which use the parent

module (or class) name as their prefix. A class can have both class and instance variables, as we'll see later; in fact,

many of the library classes do.

It is useful to be able to change the coordinates of a Point after it has been created. This operation is often

referred to as moving the Point, and is done in cases 5 and 6. In case 7, we define a second Point and we translate

that Point in cases 8 and 9. (Translation involves moving by an offset rather than to an absolute new location.)

Note that case 7 uses a short-hand equivalent to case 3 with respect to the approach for memory allocation.

Throughout this book, the abbreviated approach will be used.

The output produced by this program is:

p1 = (0,0)

p1 = (5,7)

p2 = (-4,12)

When we have a general-purpose class such as Point, we very quickly realize that it makes no sense to define

our application program as a procedure within that class. Afterall, we likely will write many programs that use this

class and we can't define all our programs inside that class. In any event, we can only have one procedure called

5. Classes

© 2001–2002, 2004–2005, 2007, 2009 Rex Jaeschke. 113

Main having some given signature. As a result, not only do we need to define our application and Point in

different classes, these classes need to be in separate source files and assemblies.

5.2 Class-Specific Procedures

It is tedious to read and write the steps to move, translate, and display a Point each time. Also, every application

relies on the fact that a Point contains an x- and a y-coordinate of type Integer, called xorigin and yorigin,

respectively. Therefore, any change in the way that type is represented will negatively affect those applications.

By making the instance variables private and adding some public procedures to class Point, we can deal with it in

a more abstract manner. Now the Point class looks like the following (See directory Point in directory Cl02):

Public Class Point

 ' instance variables

 Private xorigin As Integer

 Private yorigin As Integer

By making the instance variables Private, they can only be accessed by procedures within their parent class.

This is known as data hiding, since we hide the representation details of Point from all programs that use it. The

main reason for data hiding is to cater for unanticipated changes. Since we can never say the representation of an

object won't change and we can never say just exactly how it might or will change, we should cater for as much

flexibility as possible. That is, assume everything within reason will change.

 ' constructors

 Public Sub New(ByVal xPos As Integer, ByVal yPos As Integer)

 xorigin = xPos

 yorigin = yPos

 End Sub

 Public Sub New()

 xorigin = 0

 yorigin = 0

 End Sub

In the program above, we also see an example of encapsulation, the process by which we associate variables and

procedures by defining them in the same class. This allows us to control the access to those variables and

procedures.

The subroutines called New are special. Strictly speaking, they are not really subroutines, but rather, constructors;

however, for all practical purposes they look like subroutines—they just have a special name. From this we can

deduce that, syntactically, a constructor is nothing more than a subroutine having the special name New. The first

constructor expects two Integer arguments which represent the x- and y-coordinates, respectively, and it

initializes the private fields using those values. A constructor can contain one or more Return statements,

provided they do not contain an expression.

	Preface
	Visual Basic .NET's Design Goals
	Reader Assumptions
	Limitations
	Presentation Style
	Exercises and Solutions
	The Status of Visual Basic .NET

	The Basics
	Basic Program Structure
	Identifiers
	Introduction to Formatted Output
	Data Types
	The Boolean Type
	The Integer Types
	The Floating-Point Types
	The Decimal Type
	Enumeration Types
	User-Defined Types
	The String Type
	The Date Type
	Old-Style Declarations

	Literals
	Boolean literals
	Character Literals
	String Literals
	Integer Literals
	Floating-Point Literals
	Decimal Literals
	Date Literals

	Type Characters
	Constants
	Operator Precedence
	Type Conversion
	Arithmetic Overflow
	Module, Structure, and Class Members

	Looping, Testing, and Branching
	The While Statement
	The For Statement
	The Do Statement
	The If/Else Statement
	The Return Statement
	The Continue Statement
	The GoTo Statement
	The Select Statement

	Procedures
	Introduction
	Passing Arguments
	Passing by Value
	Passing by Reference
	Optional and Positional Arguments

	Recursion
	Argument Type Matching
	Static Variables
	Overloaded Procedures
	Generic Procedures
	Issues Regarding Main
	Variable-Length Argument Lists
	Programs, Assemblies, and Accessibility

	References, Strings, and Arrays
	Introduction
	Sharing of Like Strings
	Passing and Returning References
	Allocating Memory for Objects
	Releasing Allocated Memory
	Arrays
	Command-Line Arguments
	Copying Arrays

	Variable-Length Argument Lists
	Modifiable Strings

	Classes
	Introduction
	Class-Specific Procedures
	Data Hiding within a Class
	The Reference Variable Me
	Shared Fields and Procedures Revisited
	Containment
	Copying Objects
	Object Finalization
	Resource Disposal
	Nested Classes
	Partial Classes

	Inheritance
	Introduction
	The Is-A versus Has-A Test
	A Simple Class Hierarchy
	Abstract Classes and Procedures}
	Constructor Calls
	Protected Members
	Disabling Inheritance
	Hiding Versus Overriding
	Disabling Overriding
	A Universal Base Class
	Object Finalization Revisited
	Run-Time Type Checking
	Arrays and Inheritance
	Enums and Inheritance
	Value Types and Inheritance
	Boxing and Unboxing
	Inheritance After the Fact
	Interfaces
	Generic Types
	Defining a Generic Type
	Using a Generic Type
	Generic Type Constraints

	Exception Handling
	Introduction
	Catching Exceptions
	Throwing Exceptions
	Handling Families of Exception Types
	Catching Unexpected Exceptions
	Miscellaneous Issues
	A Final Note

	Operator Overloading
	Introduction
	A Simple Example
	A Vector Class
	Overloading Unary Operators
	Overloading Binary Operators
	Conversion Operators
	Some Rules of Thumb

	Delegates and Events
	Introduction
	Passing and Returning Delegates
	Delegate Type Compatibility
	Arrays of Delegates
	Combining Delegates
	System.Delegate
	Events

	Structures
	Introduction
	A Complex Number Example
	Simple Type Mapping
	Miscellaneous Notes

	Namespaces
	Introduction
	Declaring Namespaces
	Imports Namespace Directives
	The Standard Namespaces
	Namespace Aliases
	Access Modifiers

	Input and Output
	Introduction
	The Basic I/O Classes
	File I/O
	String I/O
	Typed Unformatted I/O
	Random Access I/O
	File and Directory Operations
	Miscellaneous Issues

	The Preprocessor
	Introduction
	Conditional Compilation Constants
	Conditional Compilation
	Region Directives

	Operator Precedence
	Visual Basic .NET Keywords
	Index

