
 

Programming 

with JavaTM AWT 

 
 

Rex Jaeschke 

  



Programming with Java AWT 

ii  © 1997–1999, 2009 Rex Jaeschke. 

© 1997–1999, 2009 Rex Jaeschke. All rights reserved. 

Edition: 4.0 (matches JDK1.6/Java 2) 

All rights reserved.  No part of this publication may be reproduced, stored in a retrieval system, or transmitted in 

any form or by any means whatsoever, except in the case of brief quotations embodied in critical reviews and 

articles. 

The information in this book is subject to change without notice, and should not be construed as a commitment 

by the author or the publisher. Although every precaution has been taken in the preparation of this book, the 

author and the publisher assume no responsibility for errors or omissions. 

Java is a trademark of Sun Microsystems. 

Windows is a trademark of Microsoft. 

The training materials associated with this book are available for license.  Interested parties should contact the 

author at the address below. 

Please address comments, corrections, and questions to the author: 

Rex Jaeschke 

2051 Swans Neck Way 

Reston, VA 20191-4023 

+1 (703) 860-0091 

+1 (703) 860-3008 (fax) 

www.RexJaeschke.com 

rex@RexJaeschke.com

  

http://www.rexjaeschke.com/
mailto:rex@RexJaeschke.com


  Table of Contents 

© 1997–2000, 2005, 2009 Rex Jaeschke.  iii 

Preface ........................................................................................................................................................ v 

Reader Assumptions ............................................................................................................................................. v 
Source Code, Exercises, and Solutions .................................................................................................................. v 
Screen Displays..................................................................................................................................................... vi 
What's Not Covered ............................................................................................................................................. vi 
The Java Development Kit .................................................................................................................................... vi 
Acknowledgments ................................................................................................................................................ vi 

1. AWT Basics ............................................................................................................................................ 1 

1.1 Introduction ................................................................................................................................................. 1 
1.2 A First Program ............................................................................................................................................ 4 
1.3 The Component Class .................................................................................................................................. 7 
1.4 The Container Class .................................................................................................................................. 8 
1.5 The Window Class ........................................................................................................................................ 9 
1.6 The Frame Class .......................................................................................................................................... 9 
1.7 The Dialog Class ........................................................................................................................................ 9 
1.8 The Panel Class .......................................................................................................................................... 9 

2. Events .................................................................................................................................................. 11 

2.1 Introduction ............................................................................................................................................... 11 
2.2 Event Types ................................................................................................................................................ 13 

2.2.1 EventObject ................................................................................................................................... 14 
2.2.2 AWTEvent.......................................................................................................................................... 14 
2.2.3 ActionEvent ................................................................................................................................... 15 
2.2.4 AdjustmentEvent .......................................................................................................................... 16 
2.2.5 ComponentEvent ............................................................................................................................ 16 
2.2.6 ContainerEvent ............................................................................................................................ 17 
2.2.7 FocusEvent ..................................................................................................................................... 17 
2.2.8 InputEvent ..................................................................................................................................... 18 
2.2.9 InputMethodEvent ........................................................................................................................ 18 
2.2.10 InvocationEvent .......................................................................................................................... 18 
2.2.11 ItemEvent ....................................................................................................................................... 18 
2.2.12 KeyEvent.......................................................................................................................................... 19 
2.2.13 MouseEvent ..................................................................................................................................... 22 
2.2.14 PaintEvent ..................................................................................................................................... 23 
2.2.15 TextEvent ....................................................................................................................................... 23 
2.2.16 WindowEvent ................................................................................................................................... 24 

2.3 Listener Interfaces and Adaptor Classes .................................................................................................... 24 
2.3.1 ActionListener ............................................................................................................................ 24 
2.3.2 AdjustmentListener .................................................................................................................... 25 
2.3.3 ComponentListener ...................................................................................................................... 25 
2.3.4 ContainerListener ...................................................................................................................... 25 
2.3.5 FocusListener ............................................................................................................................... 25 
2.3.6 InputMethodListener ................................................................................................................. 26 
2.3.7 ItemListener ................................................................................................................................. 26 
2.3.8 KeyListener ................................................................................................................................... 26 
2.3.9 MouseListener ............................................................................................................................... 26 
2.3.10 MouseMotionListener ................................................................................................................. 27 
2.3.11 TextListener ................................................................................................................................. 27 
2.3.12 WindowListener ............................................................................................................................ 27 



Programming with Java AWT 

iv  © 1997–1999, 2009 Rex Jaeschke. 

2.4 Organizing Event Handler Code ................................................................................................................. 27 
2.4.1 Handlers in Parent Classes................................................................................................................. 28 
2.4.2 Handlers in Static/Top-Level Classes ................................................................................................. 29 
2.4.3 Handlers in Inner Classes ................................................................................................................... 30 
2.4.4 Handlers in Local Classes ................................................................................................................... 32 
2.4.5 Handlers in Anonymous Classes ........................................................................................................ 33 

3. Component Layout ............................................................................................................................... 37 

3.1 Introduction ............................................................................................................................................... 37 
3.2 The FlowLayout Manager ....................................................................................................................... 37 
3.3 The BorderLayout Manager................................................................................................................... 41 
3.4 The GridLayout Manager ....................................................................................................................... 44 
3.5 The CardLayout Manager ....................................................................................................................... 47 
3.6 The GridBagLayout Manager ................................................................................................................ 51 
3.7 A Layout Manager Summary ..................................................................................................................... 60 
3.8 Custom Layout Managers .......................................................................................................................... 61 

4. Components ........................................................................................................................................ 63 

4.1 Labels ......................................................................................................................................................... 63 
4.2 Text Fields .................................................................................................................................................. 64 
4.3 Text Areas .................................................................................................................................................. 68 
4.4 Buttons....................................................................................................................................................... 69 
4.5 Checkboxes ................................................................................................................................................ 72 
4.6 Choices ....................................................................................................................................................... 77 
4.7 Lists ............................................................................................................................................................ 80 
4.8 Canvases .................................................................................................................................................... 86 
4.9 Scrollbars ................................................................................................................................................... 91 
4.10 ScrollPanes ................................................................................................................................................. 94 

5. Menus ................................................................................................................................................. 97 

5.1 Introduction ............................................................................................................................................... 97 
5.2 The Example Source Code ......................................................................................................................... 99 
5.3 The Menu Class Hierarchy ....................................................................................................................... 104 

5.3.1 MenuComponent ............................................................................................................................ 104 
5.3.2 MenuBar .......................................................................................................................................... 104 
5.3.3 MenuItem ........................................................................................................................................ 105 
5.3.4 Menu ............................................................................................................................................... 105 
5.3.5 CheckboxMenuItem ........................................................................................................................ 105 

5.4 The MenuContainer Interface .............................................................................................................. 106 
5.5 Dialogs ..................................................................................................................................................... 107 
5.6 Menu Selection Using Keys ...................................................................................................................... 114 
5.7 Popup Menus ........................................................................................................................................... 115 

Annex A. HTML Tags ................................................................................................................................. 119 

Index 121 

 



  Preface 

© 1997–2000, 2005, 2009 Rex Jaeschke.  v 

Preface 

This book covers the Java Abstract Windows Toolkit (AWT) and its use in implementing Graphical User Interfaces 

(GUIs) in Java applications and, to some extent, Java applets.  This course is based on the features made available 

starting with JDK V1.1.  

Reader Assumptions 

This text follows on from its companions Programming in Java and Java Applets. You are expected to be 

comfortable with the following concepts and the syntax required to express them in Java:  

 Basic Language Elements 

 Looping and Testing 

 Methods  

 References, Strings, and Arrays  

 Classes  

 Inheritance  

 Exception handling  

 Input and Output  

 Packages  

 Interfaces  

Source Code, Exercises, and Solutions 

The programs shown in the text are made available electronically in a directory tree named Source, where each 

chapter—as well as each example within that chapter—has its own subdirectory. 

Each chapter contains exercises, some of which have the character * following their number. For each exercise so 

marked, a solution is provided on disk in a directory tree named Labs, in which each chapter has its own 

subdirectory.1 Exercises that are not so marked have no general solution and require experimentation or research 

in an implementation's documentation.  Numerous exercises contain a statement of the form "(See 

directory xx.)". This indicates the corresponding solution or test file in the Labs subdirectory. 

You are strongly encouraged to solve all exercises in one section before continuing to the next. Also, invent your 

own exercises as you go and be inquisitive; don't be afraid to experiment. Try to understand why the compiler 

gives you each error or why a program fails at run time. 

                                                           

1
 The solutions are only available to licensees of these materials when they are used in formal training scenarios. 



Programming with Java AWT 

vi  © 1997–1999, 2009 Rex Jaeschke. 

Screen Displays  

The windows pictured throughout this text were produced on one or more versions of Microsoft Windows. Since 

different windowing systems present menus and information in different ways, you will need to extrapolate when 

using a different system.  

What's Not Covered 

The GUI support introduced with the Swing tools of the Java Foundation Classes (JFC) is covered in a separate 

course. 

JDK1.2 introduced the following new AWT subpackages, none of which is covered in this book:  

 java.awt.color — Provides classes for color spaces. 

 java.awt.datatransfer — Provides interfaces and classes for transferring data between and within 

applications.   

 java.awt.dnd — Provides interfaces and classes for supporting drag-and-drop operations.  

 java.awt.font — Provides classes and interface relating to fonts.   

 java.awt.geom — Provides Java 2D classes for defining and performing operations on objects related to 

two-dimensional geometry.   

 java.awt.im — Provides classes and an interface for the input method framework.  

 java.awt.image — Provides classes for creating and modifying images.   

 java.awt.image.renderable — Provides classes and interfaces for producing rendering-independent 

images.   

 java.awt.print — Provides classes and interfaces for a general printing API.  

The Java Development Kit 

Sun's initial production release of Java was the Java Development Kit (JDK) version 1.0. Versions 1.1 through 1.6 

contained numerous bug fixes, and language and library enhancements. The latest version can be downloaded 

from Sun's website (www.sun.com). 

While the language has remained very stable, along the way, several features were added along with numerous 

new packages and classes and new methods to existing classes. Also, some existing method names have been 

changed. In these latter cases, the old names continue to be acceptable, but are flagged by the compiler as 

deprecated, meaning that support for them might well be removed in future versions. If your compiler issues such 

a warning, consult Sun's on-line documentation to find the recommended replacement. 

From an internationalization (I18N) viewpoint, one of the most significant additions made by V1.1 was the 

completion of support for dealing with non-US, non-English environments, including those involving very large 

alphabets and non-Latin writing systems. 

Acknowledgments 

Thanks to those people who reviewed all or part of this book. In particular, students in my seminars provided 

useful feedback and located numerous typographical errors. 

Rex Jaeschke, October 2009 



1. AWT Basics 

© 1997–2000, 2005, 2009 Rex Jaeschke.  1 

1. AWT Basics 

In this chapter, we will be introduced to the Abstract Windows Toolkit (AWT) package and some basic Graphical 

User Interface (GUI) design ideas. We will also learn about the classes Component, Container, Dialog, Frame, 

Panel, and Window.  

1.1 Introduction 

The Abstract Windows Toolkit package contains numerous classes that can be used to create Graphical User 

Interfaces (GUIs). A GUI is made up of one or more objects such as buttons, checkboxes, or scrollbars, each of 

which is called a component. When we interact with a component by pressing its button, checking its checkbox, or 

moving its scrollbar, for example, that component generates an event, which can be detected and serviced by an 

event handler.1 All components are rectangular in shape and have a horizontal or vertical orientation. 

While a component is often a GUI object, some components contain other components in which case, they are 

referred to as containers. A container can contain components as well as other containers. A top-level container 

cannot be part of any other container.  Every container is a component but a component is not necessarily a 

container. When a container contains multiple components, a layout manager2 can be used to organize the visual 

placement of those components.  

Here are the component classes that, except for CheckBoxGroup, are subclasses of Component or 

MenuComponent. (Examples of some of these components are shown on the following page.)  

 Button: A button is pressed to cause the action indicated by its label.  

 Canvas: A canvas is used as a drawing area for graphics.  

 Checkbox: A checkbox is used to maintain a two-state condition; either the box is checked or it isn't.  

 CheckboxGroup: This is a group of checkboxes, only one of which can be checked at a time.  

 Choice: A choice consists of a drop-down list of items.  Once a selection has been made from this list, 

only that selection is displayed.  

 Dialog: A dialog is a top-level window that has a title bar and a border.  It is like a frame but has fewer 

properties. A dialog is a container.  

 Frame: A frame is a window that has a title bar,  a menu bar,  a border,  a cursor,  and an associated icon.  

A frame is a container.  

 FileDialog: A file dialog allows a file to be specified or selected for load-from-disk or save-to-disk 

operations. A file dialog is a container.  

 Label: A label displays a single line of text that can be modified by the program but not by the user. A 

label is generally used to label components that do not otherwise have their own label, such as text fields 

and text areas.  

 List: A list contains a scrollable list of items.  

                                                           

1
 Events and event handling are discussed in §1. 

2
 Component layout is discussed in §1. 



Programming with Java AWT 

2  © 1997–1999, 2009 Rex Jaeschke. 

 MenuBar: A menu bar contains one or more Menus, each of which contains one or more MenuItems. 

MenuItems can be checked.  

 Panel: A panel contains other components.  Components are laid out on panels, which, in turn, can be 

laid out on other containers such as panels or frames.  

 PopupMenu: A free-floating menu that “pops up”, typically, as a result of right clicking. (Introduced in 

JDK1.1.)  

 Scrollbar: A scrollbar contains a scroll box, which can be scrolled up and down. A scrollbar can have 

either a horizontal or a vertical orientation.  

 ScrollPane: A viewing area that can be scrolled in either of two directions. (Introduced in JDK1.1.)  

 TextArea: A text area displays one or more lines of text that can be edited. Horizontal and/or vertical 

scrollbars are used as necessary.  

 TextField: A text field displays one line of text that can be edited.  Although a scrollbar is not used, text 

can be scrolled by using various keys.  

 Window: A top-level window that has no title bar,  menu bar,  or border.  A window is a container.  

Most of the components listed above are shown in the following GUI, the source code for which is contained in 

Ba01.java:  

 

The components on the left are, from top-to-bottom, a label, a button, a checkbox, a horizontal scrollbar, and a 

text field; they are contained in a panel. To their right is a canvas bordered by a red rectangle and containing blue 

text. Then comes a list with drop-down list shown and the item Monday selected. In the fourth column, we have a 

choice with vertical scrollbar. Lastly, we have a text area with both scrollbars active.  

The panel and the four components to its right are contained inside a frame, which has a menu bar.  This bar has 

three Menus: File, Edit, and Help. When the File menu is selected, we see the following:  

 

The other two Menus have no items.  



1. AWT Basics 

© 1997–2000, 2005, 2009 Rex Jaeschke.  3 

Here is the hierarchy of the component classes: 

Borderlayout Cursor MenuComponent 

Cardlayout Dimension    MenuBar 

CheckboxGroup Event    MenuItem 

Color EventQueue       CheckboxMenuItem 

   SystemColor FlowLayout       Menu 

Component Font          PopupMenu 

   Button FontMetrics MenuShortcut 

   Canvas Graphics Point 

   Checkbox GridBagConstraints Polygon 

   Choice GridBagLayout PrintJob 

   Container GridLayout Rectangle 

      Panel Image Toolkit 

      ScrollPane Insets  

         Applet MediaTracker  

      Window   

         Dialog   

            FileDialog   

         Frame   

   Label   

   List   

   Scrollbar   

   TextComponent   

      TextArea   

      TextField   

 

Exercise 1-1: Build and run Ba01.java. Interact with all of the components that you can. In 

particular, try the following:  

1. Press the button. 

2. Check and uncheck the checkbox. 

3. Scroll the scroll box in the horizontal scrollbar. Click on the up and down buttons. 

4. Scroll through the text field by using the left- and right-arrow keys. Also, try using the Home 

and End keys. Delete text using the Backspace or Delete keys, mark a piece of text by clicking 

and dragging or by double-clicking, delete, or replace a marked piece of text, and insert text. 

5. Activate the choice items, scroll through the choices, and select one. 



4. Components 

© 1997–2000, 2005, 2009 Rex Jaeschke.  63 

4. Components 

In this chapter, we will learn how to use the individual components that are not also containers.  

4.1 Labels 

A label is comprised of a single line of text that can be modified by the program at any time; it cannot be modified 

by the user, however, and so it cannot get the focus. However, it can detect mouse events.  A label is commonly 

used to provide annotation for other components. The label's text can be horizontally aligned to the left, to the 

right, or centered.  It is always centered vertically.  Consider the following display, produced by Cmlb01.java, 

which contains four labels:  

 

Labels 1, 3, and 4 are aligned as indicated by their text descriptions. The text of label 2 is empty, in which case, 

alignment is ignored. Here's the source for that program:  

import java.awt.*; 

 

class Cmlb01 extends Frame 

{ 

 public Cmlb01()  

 { 

  super("Labels"); 

  setLayout(new GridLayout(4, 0)); 

 

/*1*/ Label l = new Label(); 

/*2*/ add(l); 

/*3*/ l.setText("Right-justified"); 

/*4*/ l.setAlignment(Label.RIGHT); 

/*5*/ add(new Label()); 

/*6*/ add(new Label("Centered", Label.CENTER)); 

/*7*/ add(new Label("Left-justified")); 

 

  addWindowListener(new DetectWindowClose()); 

  setSize(200, 100); 

  show(); 

 } 



Programming with Java AWT 

64  © 1997–1999, 2009 Rex Jaeschke. 

 public static void main(String[] args)  

 { 

  new Cmlb01(); 

 } 

} 

In case 1, we construct a label whose text is an empty string, which is left aligned by default. We then add that 

label to the frame in case 2. Method Label.setText can be called at any time to change the label's text.   (A 

sibling method, Label.getText, returns the text as a string.) Changing a label's text can change the size of the 

component, depending on the layout being used. As such, it may be necessary to invalidate and revalidate. 

Label.setAlignment sets the alignment to CENTER, LEFT, or RIGHT, as specified, while 

Label.getAlignment returns one of these values as an int.  

The new label created and added in case 5, has no text and is aligned left. That created in case 6 has the given text 

and is centered, while in case 7, we create a left-aligned label. Since no positions are specified, the labels are 

added to the grid layout in sequential order.  

Exercise 4-1: Inspect the documentation for class Label to find out the available public 

constructors, methods, and fields.  

Exercise 4-2*: Consider the following display:  

 

When the mouse is moved or dragged over the frame, the current cursor position is displayed 

centered at the bottom. Write a program that reproduces this behavior. What happens when you 

move the mouse outside the frame? What about dragging it outside the frame? Make sure that 

the cursor position stays at the bottom center when the frame is stretched or compressed. (See 

lab file Lbcmlb01.java.)  

4.2 Text Fields 

A text field displays a single line of text; it is commonly used to solicit user input. Unlike a label, a user can edit the 

text in a text field. When a certain key (usually the carriage return) is pressed inside a text field, an action event is 

generated and the string representing the contents of the text field is made available.  

The following display, produced by Cmtf01.java, solicits input from the user. When the Enter/Return key is 

pressed, both upper- and lowercase versions of the input string are displayed in separate text fields whose 

contents cannot be edited by the user.  



4. Components 

© 1997–2000, 2005, 2009 Rex Jaeschke.  65 

 

Here are the relevant parts of Cmtf01.java:  

import java.awt.*; 

import java.awt.event.*; 

 

class Cmtf01 extends Frame implements ActionListener 

{ 

/*1a*/ private TextField input       = new TextField(15);  

/*1b*/ private TextField inputUpcase = new TextField(15); 

/*1c*/ private TextField inputLocase = new TextField(15); 

In cases 1a–1c, we create three text fields, each having a display width of 15 characters and no initial contents. 

The width is based on the current font of that component, and limits only the display width. A text field can 

contain an arbitrarily long amount of text, which simply scrolls left or right as we enter more text or position using 

the Home, End, or direction keys. The actual width of a text field can be larger than that specified if that 

component is in a layout (such as GridLayout) that permits it to be stretched. We can find out a text field's width 

by calling TextField.getColumns; however, the value returned reflects the width specified when that 

component was constructed, not its current display width.  

 public Cmtf01()  

 { 

  super("Input Case Conversion"); 

 

  setLayout(new GridLayout(0, 2, 10, 5)); 

  add(new Label("Input", Label.RIGHT)); 

  add(input); 

  add(new Label("Uppercase Input", Label.RIGHT)); 

/*2*/ inputUpcase.setEditable(false); 

  add(inputUpcase); 

  add(new Label("Lowercase Input", Label.RIGHT)); 

  inputLocase.setEditable(false); 

  add(inputLocase); 

 

  input.addActionListener(this); 

  addWindowListener(new DetectWindowClose()); 

  setSize(250, 100); 

  show(); 

 } 



Programming with Java AWT 

66  © 1997–1999, 2009 Rex Jaeschke. 

By default, the contents of a text field can be modified by the user; that is, a text field is editable.  We can disable 

this property by calling TextComponent.setEditable with an argument of false, as in case 2.  (Calling it with 

an argument of true makes it editable.) We can also determine of a text field is editable by calling 

TextComponent.isEditable.  

 public static void main(String[] args)  

 { 

  new Cmtf01(); 

 } 

 public void actionPerformed(ActionEvent e) 

 { 

/*3*/ String text = input.getText(); 

   

/*4a*/ inputUpcase.setText(text.toUpperCase()); 

/*4b*/ inputLocase.setText(text.toLowerCase()); 

 } 

} 

When Enter/Return is pressed in an editable text field, an event of type ActionEvent is generated allowing us to 

retrieve that text field's contents using TextComponent.getText, as in case 3. We can set the text in a text field 

at any time by calling TextComponent.setText, even if that text field is not editable.  

Some implementations of the AWT provide a way to indicate whether a text field is editable. For example, the 

following display, produced by a different implementation than the one above, grays out text fields that are un-

editable:  

 

Class TextField has a sibling class, TextArea. Since these both display editable text, they have a common 

superclass, TextComponent, which provides common functionality.  For example, the methods getText,  

setText,  isEditable, and setEditable really belong to TextComponent.  

For input like passwords, it is useful to be able to suppress the input as it is typed. Rather than actually suppress 

the text, we can cause some other character, called the echo character, to be displayed in place of each character 

input; that way we can see how many characters we've entered. Commonly used echo characters are '*' 

and '?'. We establish the echo character by calling TextField.setEchoChar, passing it a char argument, 

where a character with value 0 is reserved to mean “re-enable echoing of the input.” By default, input is displayed 

when a text field is constructed. We can obtain the current echo character at any time by calling 

TextField.getEchoChar and we can determine if echoing has been enabled by calling 

TextField.echoCharIsSet. 



4. Components 

© 1997–2000, 2005, 2009 Rex Jaeschke.  67 

The text contained in a TextComponent (and therefore, in a text field) has characters numbered starting from 

position 0. A newline occupies one position. A range of positions includes the start position and one more than 

the end position; for example, the range 0–4 includes 4 characters, at positions 0, 1, 2, and 3. We can select all or 

any one contiguous part of the text in a text field by calling TextComponent.selectAll or 

TextComponent.select, respectively. And most windowing systems provide a way to select text using the 

mouse.1 Once a range has been selected,  TextComponent.getSelectionStart and 

TextComponent.getSelectionEnd return the start and end position, respectively. 

TextComponent.getSelectedText retrieves the selected text. We can use these text selection methods to 

implement sophisticated text search and replacement operations.  

As well as selecting and manipulating text under program control, windowing systems typically provide a way to 

do this using the mouse.2 Using this approach, we can copy and/or cut-and-paste from one text-oriented 

component to another.  

Exercise 4-3: Inspect the documentation for class TextField and TextComponent to find out 

the available public constructors, methods, and fields.  

Exercise 4-4*: Write a temperature conversion program that converts from Fahrenheit to 

Centigrade, and vice-versa. The conversion formula to use is as follows:  

F = (C * 9 / 5) + 32) 

Here's an example of what the display should look like:  

 

When you enter a value in one text field, the converted result is displayed in the other text field. 

An input need not be a whole number. If an input string cannot be converted to a number, display 

“Invalid input” in the other text field. (See lab file Lbcmtf01.java.)  

Exercise 4-5: In data entry, the best approach to validation is to reject an invalid character 

immediately it is input, so the user never has to re-input more than the offending character. A 

text field will accept any and all input, however, in many applications we'll likely wish to limit the 

kind of characters that we wish to accept for certain fields. For example, a cost field should accept 

fractional values, possibly with a maximum of two decimal places and optionally with thousand 

separators. We might also want to accept alphabetic input only and convert to either all upper- or 

all lowercase. Think about how these kinds of things can be achieved. What about input with a 

specific format such as dd-Mmm-yyyy?   

                                                           

1
 For example, Windows provides select-all by double-clicking the mouse and select-given-range, by clicking once and 

dragging. 
2
 For example, Windows provides a pop-up menu when we right-click the mouse. Options include Cut, Copy, Paste, Delete, 

and Select All. 



Programming with Java AWT 

68  © 1997–1999, 2009 Rex Jaeschke. 

4.3 Text Areas 

A text area is very much like a text field except that a text area can have more than one row and it can have a 

horizontal or vertical scrollbar, both, or neither.  Like TextField, TextArea is a direct subclass of 

TextComponent. 

The following display, produced by Cmta01.java, solicits input from the user in the text field at the bottom. When 

the Enter/Return key is pressed, the input string is appended to that in the text area along with a trailing newline. 

The text area is editable by default.  

 

Here are the relevant parts of Cmta01.java:  

import java.awt.*; 

import java.awt.event.*; 

 

class Cmta01 extends Frame implements ActionListener 

{ 

/*1*/ private TextArea text   = new TextArea("First line.\n", 5, 20);  

  private TextField input = new TextField(20); 

In case 1, we construct a text area, specifying its initial text contents and the number of rows and columns. As we 

learned in §4.2, the column count is only adhered to when the components are not stretched.  Since this example 

uses a FlowLayout manager, which doesn't change its components' sizes when stretched, the text area has exactly 

the display size requested. As we can see, the display above shows 5 rows with up to 20 characters each. Since 

some lines are longer than 20 characters and more than 5 lines have been entered, both scrollbars are active.  

TextArea.getColumns behaves as described for text fields and TextArea.getRows behaves in a 

corresponding fashion.  



5. Menus 

© 1997–2000, 2005, 2009 Rex Jaeschke.  97 

5. Menus 

In this chapter, we will see how to implement pull-down menus, dialogs and file dialogs, shortcut menus, and 

popup menus.  

5.1 Introduction 

Let us look at the displays below, produced by program Mn01.java:  

 

While buttons are convenient for triggering certain kinds of actions, they do take up screen space. For actions that 

are used less frequently, we might wish to provide a way to select those actions on demand, but have them 

remain out of sight the rest of the time. We can do this by implementing such actions items in a menu, which we 

pull down. For example, in the left frame above, four menus are displayed: File, Font Size, Options, and Help.  

These menus are part of a menu bar that has been attached to the parent frame. If the frame is not wide enough 

to have the whole menu bar on the same line, the menu bar is wrapped to the next line.  

Apart from the menu bar, the only component associated with the frame is a text area, which is created with 

three lines of text set in 10-point plain type. The text area is read-only; that is, it has been made non-editable.  

We can cause a menu to drop down by selecting it and, as we can see in the right frame above, the File menu 

contains five named entries each of which is referred to as a menu item}. Since the first four are grayed out we 

can see they have been disabled and, therefore, cannot be selected.  Separators have been placed between the 

second and third items and also between the fourth and fifth. Like disabled items, separators are displayed in 

some alternate way and cannot be selected; separators serve only to visually separate groups of related items.  

Item Exit is enabled and choosing it results in the program's termination.  

While the first four items are disabled (in fact, they are not even implemented), note that two of them have a ... 

suffix.  On some systems this is used to indicate that choosing such an item results in more choices, in this case 

probably a file name.  

The width of a drop-down menu is determined by the widest item label it contains.  



Programming with Java AWT 

98  © 1997–1999, 2009 Rex Jaeschke. 

 

In the left frame above, we see the Font Size menu pulled down and the 18-point item about to be selected. 

When that item is selected, the event generated is detected and the text area's contents are set to that size type, 

as shown in the right frame.  

An important property of the Font Size menu is that all of its items are mutually exclusive; the text cannot have 

more than one size simultaneously. However, some choices are binary and can be implemented a little differently; 

for example:  

 

In the left frame we see the Options menu—we're only interested in the first item for now. When the program 

starts up, it puts the text area in read-only mode by disabling editing and then it places a checkmark next to this 

item. As such, this item is called a checkbox menu item. Each time we select this option its checked status toggles. 

For example, it was initially checked then when it was selected, it became unchecked as shown in the right frame 

above.  

Look closely at the Typefaces item in the Options menu; it has a small black triangle to the right. This is used on 

Microsoft's systems to indicate that item is really a submenu. (Other systems may use a different indicator.) If we 

select this option, we see the following display:  

 

As we can see, menus can nest and this one contains two items, both of which are checkbox menu items, since 

text can be either bold or italic, both, or neither. There is no limit on the depth of menu nesting, however, beyond 

two or three levels nested menus can become cumbersome to navigate. Here are some examples of selecting 

bold and bold/italic, respectively, both at 18 point:  



5. Menus 

© 1997–2000, 2005, 2009 Rex Jaeschke.  99 

 

The final display shows the Help menu.  And as we can see, all of its items are disabled, since they have not yet 

been implemented. The menu also contains a separator. While this menu is just like any other, it is dealt with in a 

slightly special way to accommodate the fact that some windowing systems treat Help facilities specially. We'll 

discuss this later when we look at the program code.  

 

5.2 The Example Source Code 

Here then is the source code for Mn01.java:  

import java.awt.*; 

import java.awt.event.*; 

 

class Mn01 extends Frame implements ActionListener, ItemListener  

{ 

/*1*/ private MenuBar mb = new MenuBar(); 

/*2*/ private Menu menuFile = new Menu("File"); 

 private MenuItem menuFileNew = new MenuItem("New"); 

/*3*/ private MenuItem menuFileOpen = new MenuItem("Open..."); 

 private MenuItem menuFileSave = new MenuItem("Save"); 

 private MenuItem menuFileSaveAs = new MenuItem("Save As..."); 

 private MenuItem menuFileExit = new MenuItem("Exit"); 

 private Menu menuFont = new Menu("Font Size"); 

 private MenuItem menuFont10 = new MenuItem("10 point"); 

 private MenuItem menuFont18 = new MenuItem("18 point"); 

 private MenuItem menuFont24 = new MenuItem("24 point"); 

 private MenuItem menuFont48 = new MenuItem("48 point"); 


	Preface
	Reader Assumptions
	Source Code, Exercises, and Solutions
	Screen Displays
	What's Not Covered
	The Java Development Kit
	Acknowledgments

	AWT Basics
	Introduction
	A First Program
	The Component Class
	The Container Class
	The Window Class
	The Frame Class
	The Dialog Class
	The Panel Class

	Events
	Introduction
	Event Types
	EventObject
	AWTEvent
	ActionEvent
	AdjustmentEvent
	ComponentEvent
	ContainerEvent
	FocusEvent
	InputEvent
	InputMethodEvent
	InvocationEvent
	ItemEvent
	KeyEvent
	MouseEvent
	PaintEvent
	TextEvent
	WindowEvent

	Listener Interfaces and Adaptor Classes
	ActionListener
	AdjustmentListener
	ComponentListener
	ContainerListener
	FocusListener
	InputMethodListener
	ItemListener
	KeyListener
	MouseListener
	MouseMotionListener
	TextListener
	WindowListener

	Organizing Event Handler Code
	Handlers in Parent Classes
	Handlers in Static/Top-Level Classes
	Handlers in Inner Classes
	Handlers in Local Classes
	Handlers in Anonymous Classes


	Component Layout
	Introduction
	The FlowLayout Manager
	The BorderLayout Manager
	The GridLayout Manager
	The CardLayout Manager
	The GridBagLayout Manager
	A Layout Manager Summary
	Custom Layout Managers

	Components
	Labels
	Text Fields
	Text Areas
	Buttons
	Checkboxes
	Choices
	Lists
	Canvases
	Scrollbars
	ScrollPanes

	Menus
	Introduction
	The Example Source Code
	The Menu Class Hierarchy
	MenuComponent
	MenuBar
	MenuItem
	Menu
	CheckboxMenuItem

	The MenuContainer Interface
	Dialogs
	Menu Selection Using Keys
	Popup Menus

	HTML Tags
	Index



