Programming In
Visual C++ .NET™

eeeeeeee hke

Programming in Visual C++ .NET

© 2001-2002, 2004-2008, 2009 Rex Jaeschke.
Edition: 2.0

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means whatsoever, except in the case of brief quotations embodied in critical reviews and
articles.

The information in this book is subject to change without notice and should not be construed as a commitment by
the author or the publisher. Although every precaution has been taken in the preparation of this book, the author
and the publisher assume no responsibility for errors or omissions.

Java is a trademark of Sun Microsystems.
.NET, Visual Basic, Visual C#, Visual C++, Visual J#, and JScript are trademarks of Microsoft.

The training materials associated with this book are available for license. Interested parties should contact the
author at the address below.

Please address comments, corrections, and questions to the author:

Rex Jaeschke

2051 Swans Neck Way
Reston, VA 20191-4023
+1 (703) 860-0091

+1 (703) 860-3008 (fax)
www.RexJaeschke.com

rex@RexJaeschke.com

Most of the information in this book was first published as a series called "C++/CLI by Example", in the C/C++
Users Journal, in 2004 and 2005.

ii © 2001-2002, 2004-2008, 2009 Rex Jaeschke.

http://www.rexjaeschke.com/
mailto:rex@RexJaeschke.com

Table of Contents

o 1= - ol vii
REAAET ASSUMPLIONS 1.eiiiiiiieeiiiiie ettt e ettt e ettt e e e et e e e e btee e s e taeeeeeabaeeesasbtaeasaasasessansaaeesanseseesanseesessssneessnssneesanses vii
o a1 =L o o TSP PSPPI RPPPTPI vii
ST T] =Y o] o Y 4V LTSRN vii
EXEICISES @NT SOIULIONS ..uviiiiiiiiie ettt e e s st e e e st ee e e s s bte e e e sabeeeessabeaeessasteeessnseeeessseneesssennassnns viii
LV o A o TU | I AN ==Y o PP viii
F Y= g aY 1T T o 1Y =] =T F- - PP viii
THE SEATUS OF CHH/CLI aveieeieieeeeeeeeee ettt ettt e et e e e e et eeeeeeeeaaa et eeeseseaasseaeeeeesssasansseseeeeesssaaassneeeeeessssasasneneneeesens ix

B =Y a4 T & T =T 1
O O O TV Tt 1 Sy A O I B Y o T T T U TP PP 1

O I R V-1 0 g [T o F= Lol T U PP PP 3
1.1.2 DefiNiNg @ RET Class ...uuuiiiiiiiiei ittt e st e e st e e s et e e e sabe e e e sabeeeesssaeeesnnsaeeesnnsenaeans 3
R R T o o] o 1= o o [T P OO PPPR R PPPTPPIN 3
00 T RV o T Yo TN T 1) 4 APPSR 4
0 T o - 1 o T o Yo [PRI 5
0 IV I~ 1 [oo T o L 4oV PP 5
1.1.7 NOMING CONVENTIONS .eettititiitieeiiiittte e et e s esriirtte e e e e e e sstrrteeeeesessaabtateeeesssassssresaaeeesssssssstataeeesssnssssreaaeees 5
0 N 1Y o T o [Tor= [o TSRS 6
1.2.1 Allocating Managed IMIEBIMOIYuiiiiiciiieeeitieeeecttee e e sttee e s ste e e e ssatteeesstaeeeessssseeessssseaesassseeessssseeeesnsseeenns 6
0 R CF- [o -1 <1 6] | 1=To d o TP PPN 6
00 B oo 4 4 0 T =Y [O 10 o 10 PP 6
1.3 Compiling the Code USING VISUAl CHoviiiiiiee ettt eee e e vte e e e bee e e e eabae e e e arae e e e aneeas 9
R Y (ol Y=L PP UPTT RPN 10

2. Headers, In-line functions, Arrays, and GENEIICS.......ccccceiiremucirremeeirreneeirrensneesrensseesrensseessenssesssenssessaennns 13

B R oY o1 Y=LV Y1 T PP 13
2.1.1 Headers and FUNCtiON DECIarationscoocciiiiiiiiie ettt svee e s sabe e e e nreeas 13
2,12 IN-LIN@ FUNCLIONS ...eiiiiiiiiei ittt ettt ettt e sttt e s ettt e s st e e s st e e s s b e e e s sabeeesenbeeessnbeeesenneeas 14
2 R T O B 0] 5 Yo [=1 o Yo <SSP 14
D S o TV =Y [T E I o o L=T - | o) PP RT 15

D O I AN ¢ - Y 16

P B -V 10 [=T o AN - V£ S 19

B o =T o] 1= LU P PP PU P PUPPPUORONE 21

3. Stack-Based Objects and Tracking RefErencCescciviiiiireeneiiiiiiniiiinemniiiiiiiiiiiermsiemssseee. 23
N R = Tol 12 = T Yo [@] o1 =Tt £ SRR SS 23
I 1 - 1ol 1Y = T =Y o Vol TSRS 23
3.3 The “Give Me @ handle” OPEIatorcccccuiieiiee ettt ettt e e e e eee e eeeeeeesseebbraeeeeeeesssasssaseeeseeesanssrnes 24
B - (o (V- | [V =R 25
S T 0)Y 60 1) [0 o] N 25
ST AT =4 T =Y A @ o= = o N 25
S A o TUE- T AV] o T=T = o USSRt 26
3.8 Developing Types for Use by Multiple LaNGUAEEScococuiieeeciiiiee ettt e et e e vee e e e 26
S I V1Y ol=Y | oY =Y o U o ok USSRt 27

3.9.1 TYPE OF TNIS ot e ettt e e e et e e e e e bt e e e e e tte e e e ebtaeaeeattaeaeetraeaaaatraeaeabreeaeann 27
3.9.2 TeStING FOr CH+/CLI SUPPOIT...cereieieeeetieeeetee et e eeteeeeee e et e eetreeeteeeeteeeebeeeeteeeesseessesensseeensesensseesseeenes 27
S G Y £ = o 0 R B 1T T o - | SRR 27
3.9.4 KeyWords @s IAENTITIEIScciccuiiee ettt et e e e et e e e e e bt e e e e ebteeeeebeeeaseestaeaesssaeaeannes 28
TR S I 1 = I T o U UPPSRNt 28
N KO o = ol 1YL P SO 28

© 2001-2002, 2004-2008, 2009 Rex Jaeschke. iii

Programming in Visual C++ .NET

4. Static Constructors, 10, and Event HandIerscccciieiiiiiiiiiiiiiiiiiciriicreecreeerensessnssssnesessnsessnsessnssssnns 31
7t O N Y=l o o o] =T o o TSRS 31
4.2 An Example of USINg the SOIULIONc..uiiiiiiee et e et eeatae e e e eaae e e e eareeas 31
I I o V=TT o1 [V o o S EURN 33

e T Ty A U LY=o] = T 1= 11PN 35
4.3.2 The fiNAllY ClaUSE ..ot e e et e e st e e e e s sabae e e ssabaeeeesssaeeesnssaeeeennseeeenan 36
e . T V=Y oY o o =Yg Vo 1T =P 36
N D 1= Y- - | YU 37
4.3.5 Other Changes tO POINtiiii ittt e et e e st e e e st e e e esabaeeeesabaeeessnsaeeesnnsseeesan 37
T Vo o 1Y S =] (o LTS 38
T 0 (=T ¢ of 1= 39

B, VAU Class TYPES . iieuueiiirnniiiireniiiirnnisiisnssisiiesssssiisssssssmsssssssssssssssssnsssssssnssssssensssssssnsssssssnsssssssnsssssssnnss 41
5.1 POINt @S @ VAIUB ClaSS..uuiiiiiiiiiiiiiiiieiiiiieesseitee e sttt e e sttt e e s te e e ssbeeeessssbeeessastaeesssssaeessssbeeesansseeessssseeesssnsens 41
5.2 Assigning Unique Point IDS, REVISITEccccuiiiiiiiiiiieciiiiee ettt e et e s e e s e e s e e e e s nareeas 45
I T S W] [o Yo T=ToN = | I Y7 o T 1Y, o o] o1 o =PRSS 46
LR @0 o 0 o] 1= g V¥ g Y o =T PR STR 47
5.5 SOME MiSCEIANEOUS ISSUES ...eiiiueiiiieiiiiiieeiiiee ettt e e et e e et e e e sbre e e s sbbeeeesbbaeeesasbaeesssbeeessanseeeesssseeesssnsens 50
o I 3] ol 1T PP PP PP UPTTPPPPPRORIRE 50

T 4 4 T=T 1 TN 53
(70 A =1 1 o [PP UPPPPPPPPRR 53
6.2 The Abstract Transaction Bas@ Classcccuueeieiiiiiiiiiiieeeiiee e esiree e esree e e siree e e saee e s s sbee e s sabeeeessbeeesssnsenas 53
6.3 The Deposit, Withdrawal, and Transfer ClasSEsuueeiiiiiiiiiiiieieee ettt e e e e e e eeerrreeeeeeeeeennnens 55
Lo I o= TS o To Y= - o TSRS 59
6.5 ENUMS aNd INNEIIEANCE ..ciiiiiie ettt e e e et e e e s bt e e e e s asbeeeessbaeessanbeaeessteeessnnsenas 60
N I 4 = 1YL o o [o 1T 1 = ol SRR STR 61
6.7 OVErriding VErsUS HitING......veiiiiiiiee ittt e e e e e e st e e e e sbbae e e s abbaeeessbaeeessbeaeessteeesannsenas 62
Lo T Yol ol T o =T o 1 =T SRR STR 65
Lo N (<] ol 1= PRSP P PR OPOPPOP 65

7. Delegates and EVENTSccc.ciiieeeiiiieceiiiiececeieeneneesreaeseseenssesseensssssenssssssenssssssensssssssnssssssennsssssennssssnnnnns 67
/2% R 11 44 e Yo [V 4T] o HA O O R O TP O T PP U PP P P PPRTOUPRT 67
7.2 Passing and RetUIrNING DElEGAtes.cuuuiiiiiiiiee ettt e s e e e st e e e e s abe e e e s snbaeeeesnreeas 68
7.3 Delegate Type CompPatibility......cc.ueeiiiiiiiiiiiee e e e e s re e e b e e e e earaeas 70
7.4 COMDBINING DEIEGALEScei ittt e e et e e s s b bt e e e sbb e e e e saabaeeeesbeeeessbaeeeesseeesannseeas 70
S T A (= 4 B DL 1= - TSP 74
T6 EVENTS .ottt et e e e e s s e e e e e e e s e e a et e e e e s e s nrnee 76
7.7 EXEICISES uuteieeeiitieeeeittee e ettt e e sttt e e sttt e e s bttt e e s abe e e e ssb et e e e s bb e e e aasbe e e e s n b bt e e s anb e e e e ansbeee s nnbeeesannbeeeeennbeeesennrenas 79

T 111 =] - 11 =L J SOt 81
S N D 1= 1o Y[oY T I [N =T - ol YRS 81
8.2 IMPIEMENTING AN INTEITACE ..uvii i e et e e e st e e e e ab e e e e e abaeeeesnbaeeeennseeas 81
8.3 ENUMErating OVer @ COlIBCLION . ..uiii e ettt e e e st e e e st te e e s e ab e e e e eabeeeeennbaeesesnseeas 84
R o =T ol (Y=L OO PSSO 85

L T C =T o 1= o Lol Y/ o T 87
S 1Y 1 Y[oV W G- oY= o Tol Y/ o 1 TSRS 87
9.2 USING @ GENEIIC TYPO tettttrtrtrrrrrrrurerererereeerererarerereeeeereeere———————————————.———.———.—.—...—.......e..eeennnnssnnnnsnnnssnnsssssssssssnnes 90
1S R I C 1= o V=T Tl IV o T= I @] o K5 o - 11 L €TSS S O TP TRORRTRRNN 92
1S R o =T ol (Y=L TSSOSO 93

iv © 2001-2002, 2004-2008, 2009 Rex Jaeschke.

Table of Contents

10. Destruction and FINalizationcciceiiieiiiiiiiiirrccricrecreeereeesreeeseneesensesensessasssnsesenssssnnssssnsesansanen 95
10.1 The Resource Leakage Problem..........oo ittt ettt e et e e e et e e e et e e e ebteeeesaraaeeesnaneeeeanes 95
10.2 Automatic Garbage CollECTIONcuiiee ettt e e et e e e e te e e e ebe e e e eebteeeeentaeeesseneeeeanes 96
10.3 The Vector Class REVISITEAciiiii i ciiiieiie ettt et e e e e e e e et re e e e e e e e s eaaraaeeeeeeeessassbbaaeeaeeesanssraaneeens 97
O A ST P 12 1 o o U UUR 98
10.5 MISCEIANEOUS ISSUESuuviiiieieeiieeiiiiiieee e e e eeccctreeee e e e e e eiettreeeeeeeeesstabasaeeeaeesesasntsaasesaseeasasstsssseaeesssasssreseeaans 103
O I Y ol 1T 103

8 S 1T U T T IO T TU N 105
5 000 A T o Yo [1 o o TR 105
11.2 THE BASIC /O ClaSSES ..uuueerveiieeieiiieeeiieiieeee e e eeeeaetteeeesssessaaaeeeeeessssassaateeeeessssasabasseesesssassaraseeeeesssasnsrreeseees 107
T T 11T L U 108
R 4T = 4 TR 110
11.5 Typed UNfOrmMatted [/occieeieciicieceetee ettt et te ettt te e te et e e ba e s ba e s tbeeabeebeasbaessaesasesabesnbeensennses 111
11.6 RANAOM ACCESS 1/0 auuiiiiieeiie ettt ettt e sttt e e sttt e e s ettt e e s eabt e e e seabaeeesabbaeessabbaeeesasbaesesasbaeeesssbaeesssnbaneesan 112
11.7 File and DireCtory OPerationsS......cccueiiiiciiieiicieteeeciteeeeiitee e sttt eeessateeeessataeeessssaeeesassaeeessssseeessnsseessssssenennn 113
11.8 IMISCEIANEOUS ISSUESuuviiieieieeiieiiitieie e e e e eerecirteeeeeeeeesettbeeeeeeeeessabasaeeeeeeeesssstssaeeseeeeasasssssaeeeessssnsssrasseeens 115
L1.9 EXBICISES oeieeeeeeeeeieeeeeeeee e e e ee e e e e et eeeeeseseeeeeeeeeeeaeseaeaaeaaeasaeeaeaeeaeeaaeeeaaeeaaeeeeeeaeeeaaaaeeeeens 115

7 2 0 o Ty 117
12.1 Using a CLILibrary Clon@ FUNCHIONccccuiiiiiciiie ettt e et e et e e e e satae e e esatae e e ssasaeeeensaeeessnnaneanan 117
I N (o [1o Y- @[] o1 T F=dh o I I NV o TSR 118
I T @ To Y o 11 oY= AV o - 1YL RPN 122
12.4 Cloning and DeriVEd ClaSSESuuiiiiciiieiiciiiieieiiteeeecteeeeestteeesetteeesssteeeessssseeessssaeeessssseeessssseeessssseessssssenesns 123
12.5 Creation Without CONSTIUCTIONuuiiiiiiec ettt e e e e e e e e e etbrr e e e e e e e e s s aarbaaeeeeeesennssnsaeaeens 125
L12.6 EXEICISES oeeeeeeeeeeeee e e e e e e et e e e e ettt et e e e e e e e e e e e e e e s eeeeeeeeeeeeeeeeseaeaaeaaaesaeeeeaeseaeaaeaeeeaaaaaaaaeeaeaeaaaaaaaaens 126

1 T 1 4T =T T 129
S 200 A T o Yo [¥ o1 1 o o ORI 129
T O TN o= I T =Y o LRSS 130
13.3 SYNChroNized StAatEMENTS ..cciciiiii it e e e e e e s et e e e sataeeeeassaeeessssaeeessnsseeesnnssenenas 133
13.4 Other FOrms of SYNChroNIzZation.........oocciiiiiiciiie et e e s e e e e sarae e e sssseeaeas 142
R Y Yo T =4 o= I T =Y [o [P 145
13,6 VOIatile FIElUS...ciieiieiiie ettt et ettt e st e e st e e s bt e e s ab e e s be e e sabe e s be e e nteesnteenareens 145
ST A I 1 0=T: T R e Yot | B) o - =< USRS 146
13.8 Atomicity and Interlocked OPerationscoccuvieiiciiieieiiiee e e e s sre e e e rabae e e sraereeeeas 148
1309 EXBICISES weeeeeeiuteieeeiittee ettt e ettt e e sttt e e sttt e e easb e e s s abbe e e s e bbb e e s e st e e e eaans et e s e anbeeeeeasseeeesnbeeeesnsaeeesannbeeesannreeenan 150

14. Object Serializationccveeeeiiiiiiiiiiniiiiiiiiirrs s s s s s s s s s s s s e s nnnasssssseens 153
14,1 INTrOAUCTION cnetiteiee ettt ettt et ettt sa e s bt e e bt e e s bt e s bt e e sabeesabaeesabeesasbeesabeesabaeesabeesabeesnteesanaeesaseens 153
14.2 Serializing Objects that Contain REfErENCES.......coccuiiii i 155
14.3 Dealing With MUItIPIEe HANAIESuviiiiiieieeceee ettt e s e e e e e e e s saeae e e ensbaeesnasaaeeean 157
14.4 CustomMized SerialiZation.......ccuiei i e e et e e et e e e et e e e e sata e e e eantaeeeenaraeeeeas 160
14.5 Identifying the Fields to be SErialized.........coccuiiiiiiiiiice e raaae e 163
I Y T T 1 2= o] o T Slo T o 4 - RSN 165
LA.7 EXBICISES ceeeeeeeeeeeeeeieieieieieeieseseeeeesaeeessesasesasesasasasssssssssssssssssassesasssesesens 165

T o T L] 167
0 A T o Yo [1 1 e o SO USRS 167
15.2 SEIVEI-SidE SOCKELS. ...ciiiitiieiiiiiie ettt ettt ettt e e et e e e e rate e e e et taeeesstaeeeessaeeeensaeeesnssseeesnsaneesnnsseeannn 167
T B O 11T oY Y o LI o T] £ SRR 170
15.4 Serialization OVEI SOCKETS ...cccuiiii ittt et e e e e e et e e e e atae e e s ataeeeesnsaeeessnsseeesansseeennn 173

© 2001-2002, 2004-2008, 2009 Rex Jaeschke. v

Programming in Visual C++ .NET

1T T o =Y o 1Y YRR 173
B Y 4]« 10 PPN 175
ST R 1 4 o Yo [0 ot o] o OSSR 175
16.2 Predefined INET At DULES ..ot e e e e e e e e e e e e e e 176
16.3 ENUM Valug FOIMAattingceiiiciiiiiiiiiieeeiite ettt e sttt e st e e e et e e e st e e e ssbaeeessseeeesnasaeeesnseeessnnsseaenns 176
16.4 StructLayout and FIEldOFfSEEuiii i e e st e e s satae e e e snbreeessnreeeean 177
ST B 1 13T o USRS 179
S SR O B 0o T3 T] =Y | USRS 182
A 0] 1Y o] =) TR 182
R I O T (o 0 N] o U T 183
LB.9 EXBICISES wuuueiiieiiiiitiiiiieeeeeeeeeiieeeeeeeeettat e eeeeeereatsataaeeeesssssssanaaseeessssssnannseeesssssstnnneseeesessssnnnnseeesesssssnnnannenns 183

Vi © 2001-2002, 2004-2008, 2009 Rex Jaeschke.

Preface

Preface

Welcome to the world of C++/CLI,* an important new dialect of Standard C++. In this book, we’ll see how C++ has
been extended to allow it to exploit the CLI* platform.

The intended audience of this book is experienced C++ programmers who are faced with “getting up to speed”
with C++/CLI, or who simply want to understand where Visual C++ is headed. It is not intended directly for those
making the transition from Microsoft’s earlier “Managed Extensions to C++” effort.?

Reader Assumptions

This is not a first course in C++, and | assume that you know how to use Visual C++.
To fully understand and exploit the material, you should be conversant with the following C++ topics:

e Header usage

e All the built-in types

e Basicl/O

e Enumerated types

e Data and function pointers

e C(Class design and implementation, including inheritance

Limitations

This book covers the .NET-related extensions in Visual C++. It also introduces the .NET class library. However, a
very small percentage of that library’s facilities are mentioned or covered in any detail. The .NET library contains
so many functions that whole books have been written about that subject alone.

Presentation Style

The approach used in this book is different from that used in many other books and training courses. Having
developed and delivered programming language training for some 14 years, | have found that the best approach
for my students is an incremental one. | avoid introducing things that are unnecessary at any given time, thus
making examples small, simple, and focused. Many books use GUI and numerous non-trivial library facilities in the
first few examples, and certainly in the first chapter. | do not care for this approach, either as a reader or as an
educator. Instead, | prefer the student to have an excellent chance of understanding and absorbing small amounts
of new material, and reinforcing it with lab sessions, as they progress. The intent here is to eliminate any chance
of their being overwhelmed, provided, of course, they meet the prerequisites.

! CLI stands for “Common Language Infrastructure”, the subset of .NET that was standardized by Ecma Technical Committee
TC39/TG3, and adopted by ISO/IEC.

> NET is the name of a Microsoft product that is a superset of the CLI standard. Another implementation of the CLI is Mono,
from Novell/Ximian, which runs on Windows and Linux. See http://www.mono-project.com/about/index.html.

® For help with that topic, look for Stan Lippman’s comprehensive articles at http://msdn.microsoft.com/visualc/.

© 2001-2002, 2004-2008, 2009 Rex Jaeschke. vii

http://msdn.microsoft.com/visualc/

Programming in Visual C++ .NET

Different styles work for different teachers and different students. | do not suggest that my approach is better
than any other is; | simply know that my approach works well, and has formed the basis of my successful seminar
business.

Exercises and Solutions

The programs shown in the text are available electronically in a directory tree named Source, where each
chapter has its own subdirectory, within which each program has its own subdirectory.

Each chapter contains exercises. For each exercise having a concrete solution, that solution is provided
electronically in a directory tree named Labs, where each chapter has its own subdirectory, within which each
program has its own subdirectory.! Exercises having no general solution require experimentation or research in an
implementation's documentation.

You are strongly encouraged to solve all exercises in one section before continuing to the next. Also, invent your
own exercises as you go and be inquisitive; don't be afraid to experiment. Try to understand why the compiler
gives you each error or why a program fails at run time.

What You'll Need

Apart from a good dose of enthusiasm and time, you’ll need a compiler,? so you can try things yourself. (You
should also get a copy of the C++/CLI standard.?)

Assemblies and Metadata

The traditional C++ compilation model involves compiling each source file separately to object form, then linking
all object files together—along with library functions—to make an executable. The CLI model is quite different; it
involves the creation and use of assembilies.

Simply stated, an assembly is the output from a single compilation, regardless of how many input source files are
involved. If that output has an entry point (a main function, for example), it is an .exe file; if it does not, it’s a .dll
file. Any compilation that refers to something from outside the assembly being created, must access that
dependent assembly. There is no header-like mechanism to promise what will ultimately be available at link-time.
Such external information must be accessible during compilation by having the compiler “look inside” dependent
assemblies.

An assembly contains metadata, which describes the types and functions contained therein; it also contains
instructions in the Common Intermediate Language* (CIL), which Microsoft calls MSIL. These instructions can then
be executed by the platform-independent Virtual Execution System (VES).

! The solutions are only available to licensees of these materials when they are used in formal training scenarios.

’ Afree copy of Microsoft's Visual C++ Express Edition can be downloaded from http://www.microsoft.com/visualc.

* A free copy of this can be downloaded from http://www.ecma-international.org/publications/standards/Ecma-372.htm
*CIL and VES are part of the CLI standard, ECMA-335, which can be downloaded from http://www.ecma-
international.org/publications/index.html.

viii © 2001-2002, 2004-2008, 2009 Rex Jaeschke.

http://www.ecma-international.org/publications/standards/Ecma-372.htm

Preface

The Status of C++/CLI

The first implementation of C++/CLI was the Beta 2 release of Microsoft's Visual Studio .NET, in May 2005. That
implementation was based on the draft C++/CLI standard produced by Ecma’ Task Group TC39/TG5. (Task Group
TG3 is responsible for the CLI standard.) TG5 started work on this standard in December 2003, and completed its
work in September 2005. Its work was adopted by Ecma as a standard in December 2005.

This author serves as project editor of TG5 (and TG3).

Rex Jaeschke, September 2009

! Ecma is an international standards organization (http://www.ecma-international.org).

© 2001-2002, 2004-2008, 2009 Rex Jaeschke. ix

1. Getting Started

1. Getting Started

In this chapter, we'll define a relatively simple CLI type and use it from an application. We'll also see how to build
the two corresponding project types in Visual C++.

1.1 Our First CLI Type

Let’s look at the source code of a class that models a two-dimensional point (see directory gsO1\Point).

/*1%/
using namespace System;
/*2%/
public ref class Point
{

int x;

int y;
public:

// define read-write instance properties X and Y

/*3a*/ property int X

{

/*3b*/ int get() { return x; }

/*3c*/ void set(int val) { x = val; }
}

/*4a*/ property int Y
{

/*4b*/ int get() { return y; }

/*4c*/ void set(int val) { y = val; }
}

// define instance constructors

/*5a*/ Point()

{
/*5b*/ X = 0;
/*5c*/ Y = 0;

© 2001-2002, 2004-2008, 2009 Rex Jaeschke. 1

Programming in Visual C++ .NET

/*6a*/ Point(int xor, int yor)
{

/*6b*/ X

/*6c*/ Y

Xor;
yor;

// define instance functions

/*7a*/ void Move(int xor, int yor)

{
/*7b*/ X = xor;
/*7c*/ Y = yor;
}
/*8a*/ virtual bool Equals(Object” obj) override
{
/*8b*/ if (obj == nullptr)
{
return false;
}
/*8c*/ if (this == obj) // are we testing against ourselves?
{
return true;
}
/*8d*/ if (GetType() == obj->GetType())
{
/*8e*/ Point” p = static_cast<Point”~>(obj);
/*¥8f*/ return (X == p->X) && (Y == p->Y);
}
return false;
}
/*¥9*/ virtual int GetHashCode() override
{
return X ~ (Y << 1);
}
/*10a*/ virtual String” ToString() override
{
/*10b*/ return String::Concat("(", X, ",", Y, ")");
}

}s

2 © 2001-2002, 2004-2008, 2009 Rex Jaeschke.

1. Getting Started

Various source lines (or blocks of lines) are labeled with comments of the form /*1*/, /*2*/, /*3a*/, and so
on. These shall be referred to as cases, as in case 1, case 2, case 3a, and so on.

1.1.1 Namespaces

All CLI standard library types reside in namespace System or in namespaces nested inside that one. Examples are
the types System: :0bject and System: : String, and the namespaces System: : I0, System: : Text, and
System: :Runtime: :CompilerOptions. Case 1 avoids the need for using namespace qualification. For
example, in case 10a, we can write String instead of its fully qualified name, System: :String.

1.1.2 Defining a Ref Class

In case 2, we define a ref class called Point. A ref class is a CLI reference type. When taken together, ref and
class, with intervening white space, make up a new keyword.

The public prefix indicates that this type is visible outside its parent assembly. There are two kinds of visibility,
public and private. By default, types have private visibility. Only types can have visibility; as such, non-member
functions, global variables, and file-scope typedefs cannot be made visible outside their parent assembly.

As C++ programmers would expect, except for the default member accessibility, a ref struct is just like a ref class.
We'll refer to both as ref classes.

Every ref class has a base type. If one is not explicitly specified, the default base is System: :0bject. A ref class
can have only one base class.

1.1.3 Properties

Regardless of how a Point is represented internally, we think of that Point as having an X and a Y property. If the
Point actually uses Cartesian representation, the implementation of these properties is trivial. If it uses polar
representation, that’s more complicated, but it’s still a hidden implementation detail.

A scalar property is a member that provides field-like access to an instance. For example, in case 3a, we define a
property X with type int. The token property is a contextual keyword, not a globally reserved keyword
(although the Visual C++ editor color-codes it as if it were; which is not a bad thing). Its use is only reserved in this
context.

A property can have either or both a get accessor and a set accessor. We'll simply call them the getter and the
setter, respectively. The job of a getter (see case 3b) is to return the value of the given property (by retrieving it
from some internal storage, by computing it, or by reading it from a file, for example). The job of a setter (see
case 3c) is to set the value of the given property using the programmer-supplied value. These accessors are
defined as separate functions with the names get and set, respectively, and they must return and take,
respectively, the declared type of the property, in this case, int. (The names get and set are not keywords.) The
getter and setter can have different accessibilities; it is quite reasonable to want a public getter and a private or
protected setter, for example.

! While having a keyword that contains whitespace may seem odd, it was done that way to avoid breaking existing code.

© 2001-2002, 2004-2008, 2009 Rex Jaeschke. 3

5. Value Class Types

5. Value Class Types

In all previous chapters, the class types we’ve used have been ref classes, which means that instances of them—
including those declared on the stack—are managed by the garbage-collector. In this chapter, we’ll look at what is
often referred to as a “light-weight” class mechanism, namely, the value class, instances of which are not
managed by the garbage collector.

Value class types are particularly useful for reasonably small data structures that have value semantics. Examples
include points in a coordinate system and complex numbers. Typically, a good candidate for implementation as a
value class will have only a few data members, will not require inheritance, and will not be expensive in terms of
passing and returning by value, or copying during assignment.

5.1 Point as a Value Class

Let’s take the Point class from §1, and turn it into a value class (see directory vc01\Point):

using namespace System;

public value class Point

{
int x;
int y;
public:

// define read-write instance properties X and Y

property int X

{

int get() { return x; }

void set(int val) { x = val; }
}
property int Y
{

int get() { return y; }

void set(int val) { y = val; }
}

© 2001-2002, 2004-2008, 2009 Rex Jaeschke. 41

Programming in Visual C++ .NET

42

// define instance constructors

/7
/7
//
//

//
//
//
//

Point(int xor, int yor)

{
X = xor;
Y = yor;
}
void Move(int xor, int yor)
{
X = xor;
Y = yor,;
}

virtual bool Equals(Object” obj) override

{
if (obj == nullptr)

{
return false;

}

if (GetType() == obj->GetType())

{
Point” p = static_cast<Point”>(obj);
return (X == p->X) && (Y == p->Y);

}

return false;

static bool operator==(Point pl, Point p2)

{
return (pl.X == p2.X) & & (pl.Y == p2.Y);

static bool operator==(Point% pl, Point% p2)

{
return (pl.X == p2.X) && (pl.Y == p2.Y);

}

static bool operator==(Point& pl, Point& p2)

{
return (pl.X == p2.X) & & (pl.Y == p2.Y);

© 2001-2002, 2004-2008, 2009 Rex Jaeschke.

5. Value Class Types

virtual int GetHashCode() override

{
return X ~ (Y << 1);
}
virtual String” ToString() override
{
return String::Concat("(", X, ",", Y, ")");
}

}s

This is achieved by replacing ref with value. Like ref class, value class is a keyword containing
whitespace. And as we should expect, the only difference between a value class and a value struct, is that the
default accessibility for the former is private, while that for the latter is public.

A value class automatically derives from System: :ValueType (which, in turn, derives from System: :Object);
however, this cannot be declared explicitly. A value class is also implicitly sealed; that is, it cannot be used as a
base class. (As a result, there is no point giving a value class member an access specifier of protected; however,
that is not prohibited.) Any value (or ref) class X can be declared sealed explicitly; as follows:

value class X sealed {/*.*/};

Note the absence of a default constructor, which, in the ref class version, sets the x- and y-coordinates to zero.
For a value class, the CLI itself sets all fields in any instance of that class to all-bits-zero; the programmer cannot
provide his/her own default constructor. For our Point type, this means a default set of coordinates of (0,0), and
that is acceptable; however, zero, false, and/or nullptr might not be appropriate default values for fields in
other types, so this requirement may rule out a value class’s being used instead of a ref class for certain types.
(Note that a conforming C++/CLI implementation is required to represent the values false and nullptr as all-
bits-zero.)

Another restriction on value classes is that they come with a default copy constructor and assignment operator,
both of which perform bitwise copies, and the programmer cannot provide his/her own versions of these
functions.

Function Equals can be made a bit simpler that the ref class version, but not much. Remember, we are
overriding the version defined in System: :0bject, and that takes an Object”. Since an argument of that type
could have the value nullptr, as usual, we deal with first. The step we can omit is that which checks to see if we
are being asked to compare something against itself. For ref class implementations of Equals, this step is
necessary, as an infinite number of handles can refer to the same object. However, in the case of a value class, no
two instances can ever represent the same instance. Two instances can represent Points having the exact same
coordinates, but changing the x-coordinate of one Point does not change that in the other.

When an instance of Point is passed to Equals, being of a value class type (which is ultimately derived from
System: :0Object), boxing occurs. That is, an instance of Object is allocated on the garbage-collected heap, and
that instance contains a copy of the Point passed. Since we have just created a new object, and there is only one
handle to it, it can never be the same Point object as any other Point object.

© 2001-2002, 2004-2008, 2009 Rex Jaeschke. 43

10. Destruction and Finalization

10. Destruction and Finalization

C++/CLI is a marriage of two different worlds, one bounded by Standard C++, the other by Standard CLI. Consider
the cleanup sometimes needed at the end of an object's life. On the one hand, Standard C++ supports
deterministic object cleanup via a destructor. On the other, Standard CLI supports non-deterministic object
cleanup via a finalizer. Since C++/CLI supports both, programmers need to understand both facilities, and to be
able to determine which to provide for the classes they develop. They also need to consider that C++/CLI classes
might be derived from classes written in other CLI-based languages (such as C# and VB.NET), and vice versa.

In this chapter, we'll look at the differences between destruction and finalization, and the syntax to achieve both.

10.1 The Resource Leakage Problem

Many class types are self-contained; that is, an instance of them directly contains all the data needed to represent
a value of that type, so no cleanup is needed at the end of the instance's life. However, not all class types are self-
contained. For example, a class that implements a variable-length vector typically contains an address to the
vector's elements, and a vector length. The vector elements themselves are stored outside the so-called "vector"
object, in which case, the vector type is really a descriptor for the data logically stored in that vector. As such, this
type needs to have an assignment operator and copy constructor, so instances can be copied correctly. It also
needs a destructor to release the vector element space when an instance is destroyed.

If an object acquires some resource or takes some action during its life that needs to be released or undone at the
end of its life, in Standard C++, we use a destructor. Here are relevant excerpts from a vector class that exhibits
this behavior (see directory df01\Vector_Test):

template <typename T>
class Vector

{
int length;
T *vector;
public:
Vector(int vectorLength, T initValue)
{
length = vectorLength;
vector = new T[length];
// ..
}

© 2001-2002, 2004-2008, 2009 Rex Jaeschke. 95

Programming in Visual C++ .NET

Vector(const Vector& v)

{
length = v.length;
vector = new T[length];
/] .

}

~Vector()

{
delete [] vector;

}

T& operator[](int index);
const T& operator[](int index) const;
Vector& operator=(const Vector& v);

};

The main concern here is that the resource acquired not be leaked. As to exactly when that resource is reclaimed
is often of little or no interest, so long as it's done. There are important cases, however, in which we care about
the timing of such reclamation. For an example, if an object is backed-up by a file, we probably want that file to be
closed immediately that object is destroyed, so the file is available for use by other objects and functions.

Sometimes the life of some resource allocation isn’t tied to the life on any one object. In such cases, it is useful to
be able to transfer ownership of that release from one object to another. (The standard library type auto_ptriis
an example of this.) In other situations, it is useful to keep a resource only as long as one or more objects are
currently using it, and to free it when it is no longer being used. This is achieved by a technique known as
reference counting.

We design a Standard C++ class so that instances of it can be allocated statically (either as globals or at file-scope),
automatically (on the stack), or dynamically (on the native heap). The order in which constructors and destructors
are called is, essentially, well defined and well understood.

10.2 Automatic Garbage Collection

In §1.2.1and §1.2.2, we were introduced to allocating memory on the managed heap, and garbage collection.
Let's recap what we learned there by looking at the following example (see directory df02):

using namespace System::Text;

StringBuilder® f(StringBuilder” sb)

{

/] ...
/*¥1*/ return gcnew StringBuilder(25);
}

96 © 2001-2002, 2004-2008, 2009 Rex Jaeschke.

10. Destruction and Finalization

int main()

{

/*¥2*/ StringBuilder” sbl = gcnew StringBuilder(1090);
/*3*/ StringBuilder” sb2 = f(sbl);

/*4*/ sbl = nullptr;

}

In case 2, we define an automatic handle to type StringBuilder, and we make it refer to the new StringBuilder
object allocated on the managed heap. This memory is under the watchful eye of the garbage collector.

The way to think about garbage collection is that every distinct object allocated on the managed heap has its own
handle reference count, which is maintained by the system, and which is not available—even for read access—to
the programmer. When that count reaches zero, that memory can be reclaimed automatically by the system.

When the object is created in case 2, its reference count is 1. When f in called in case 3, sb now also refers to the
same object, making its reference count 2. When f terminates, handle sb goes out of scope, in which case, the
memory to which it referred has one less handle associated with it, making its reference count 1. If a handle
doesn’t go out of scope for some time, yet we are no longer interested in the memory to which it refers, we can
reduce its reference count by setting that handle to nullptr, as in case 4. At this time, there are no handles
referring to the initial allocated object, make it available for garbage collection.

In case 1, we allocate a second object, so its reference count is 1. Because we return the handle by value, for an
instant, two handles refer to that new object; however, one of them goes out of scope when f terminates. The
returned handle is used to initialize sb2 in case 3 making the count 2, but the handle returned is no longer used,
so the effective count is still only 1. When main terminates, sb2 goes out of scope, the reference count to which
it refers is decremented, to zero, so it becomes eligible for garbage collection.

Note that there is no way to explicitly free managed memory, however; we can apply delete to a handle, and
that will run the destructor for the object immediately, but the memory will not be reclaimed until the garbage
collector decides it needs to collect it.

10.3 The Vector Class Revisited

Let us now re-implement the vector class using C++/CLI and garbage collection (see directory df03\Vector):

generic <typename T>
public ref class Vector
{
int length;
array<T>” vector;
public:
property T default[int] { /* .. */ }

© 2001-2002, 2004-2008, 2009 Rex Jaeschke. 97

	Preface
	Reader Assumptions
	Limitations
	Presentation Style
	Exercises and Solutions
	What You’ll Need
	Assemblies and Metadata
	The Status of C++/CLI

	Getting Started
	Our First CLI Type
	Namespaces
	Defining a Ref Class
	Properties
	Type Equality
	Hash Codes
	Value Formatting
	Naming conventions

	An Application
	Allocating Managed Memory
	Garbage Collection
	Formatted Output

	Compiling the Code using Visual C++
	Exercises

	Headers, In-line functions, Arrays, and Generics
	Point Revisited
	Headers and Function Declarations
	In-Line Functions
	CLS Compliance
	Equals versus operator==

	CLI Arrays
	Parameter Arrays
	Exercises

	Stack-Based Objects and Tracking References
	Stack-Based Objects
	Tracking References
	The “Give me a handle” Operator
	gc-lvalues
	Copy Constructor
	Assignment Operator
	Equality Operator
	Developing Types for Use by Multiple Languages
	Miscellaneous Topics
	Type of this
	Testing for C++/CLI Support
	System::Decimal
	Keywords as Identifiers
	Literal Fields

	Exercises

	Static Constructors, IO, and Event Handlers
	The Problem
	An Example of Using the Solution
	The Solution
	First Use of a Class
	The finally Clause
	Event Handling
	Delegates
	Other Changes to Point

	initonly Fields
	Exercises

	Value Class Types
	Point as a Value Class
	Assigning Unique Point IDs, Revisited
	Fundamental Type Mapping
	Complex Numbers
	Some Miscellaneous Issues
	Exercises

	Inheritance
	Enums
	The Abstract Transaction Base Class
	The Deposit, Withdrawal, and Transfer Classes
	The Test program
	Enums and Inheritance
	Arrays and Inheritance
	Overriding versus Hiding
	Access Specifiers
	Exercises

	Delegates and Events
	Introduction
	Passing and Returning Delegates
	Delegate Type Compatibility
	Combining Delegates
	System::Delegate
	Events
	Exercises

	Interfaces
	Defining an Interface
	Implementing an Interface
	Enumerating Over a Collection
	Exercises

	Generic Types
	Defining a Generic Type
	Using a Generic Type
	Generic Type Constraints
	Exercises

	Destruction and Finalization
	The Resource Leakage Problem
	Automatic Garbage Collection
	The Vector Class Revisited
	Finalization
	Miscellaneous Issues
	Exercises

	Input and Output
	Introduction
	The Basic I/O Classes
	File I/O
	String I/O
	Typed Unformatted I/O
	Random Access I/O
	File and Directory Operations
	Miscellaneous Issues
	Exercises

	Cloning
	Using a CLI Library Clone Function
	Adding Cloning to a Type
	Cloning Arrays
	Cloning and Derived Classes
	Creation without Construction
	Exercises

	Threads
	Introduction
	Creating Threads
	Synchronized Statements
	Other Forms of Synchronization
	Managing Threads
	Volatile Fields
	Thread-Local Storage
	Atomicity and Interlocked Operations
	Exercises

	Object Serialization
	Introduction
	Serializing Objects that Contain References
	Dealing with Multiple Handles
	Customized Serialization
	Identifying the Fields to be Serialized
	Serialization Format
	Exercises

	Sockets
	Introduction
	Server-Side Sockets
	Client-Side Sockets
	Serialization over Sockets
	Exercises

	Attributes
	Introduction
	Predefined .NET Attributes
	Enum Value Formatting
	StructLayout and FieldOffset
	DllImport
	CLSCompliant
	Obsolete
	Custom Attributes
	Exercises

